
 LOONGSON 2F

 

High performance 64bit superscalar MIPS microprocessor 
PRELIMINARY DATA 

FEATURES 

 64-bit MIPS III Instruction Set and Extended Set 

compatible, 64-bit word length;  

 Quad-issue dynamic superscalar with support for 2 

fix point units, 2 fully pipelined floating point 

multipliers / adders and a load / store unit. 

 9-10 stage super pipelining with support for register 

renaming, dynamic scheduling, branch prediction 

and other out-of-order execution. 

 IEEE 754-compatible floating-point units enable 

fully pipelined multiplication and addition arithmetic 

operation, and hardware division and extraction, 

with support for media acceleration. 

 The joint TLB has 64 entries each of which contains 

2 pages ranging from 4KB-4MB; the independent 

16-32 entry instruction TLBs support executable 

bits and prevents buffer overflow attack. 

 On-chip separate our-way set associative L1 

caches offer 64 KB capacity and 62-byte block for 

code and data application respectively.   

 512KB of on-chip four-way set associative L2 

cache (32-byte block) can be turned on/off by 

software. 

 Integrated 64-bit DDR3 memory controller I/F at 

333MHz max. 

 Integrated 133MHz PCIX bus controller, with 

support for PCIX bus, and compatible with PCI. 

 

 
 

 

 

 

 

                    Package: 452 HFC BGA   27mmx27mm 

 

 

 1-GHz main frequency allows for dynamic 

frequency conversion and shutdown of the core 

clock for dynamic power management. 

 Lower power < 5W at 1GHz. 

 Video accelerate module in its write data path to 

PCI/PCI-X controller. With software driver, the 

video accelerate module can transfer YUV format 

video data to RGB format and do zoom action 

automatically. 

 

OVERVIEW 
The Loongson2F is an evolution of the 

Loongson2E with the enhanced I/O and memory 
accessing bandwidth and a software work frequency 
changing scheme and compatibility to MIPS64.  

The Loongson2F integrates a high performance 
Loongson2 CPU core, DDR2 memory controller, 
PCI/PCI-X interface, Local bus, interrupt controller 
and video acceleration unit. 

The Loongson2F will be manufactured in 
CMOS090 90nm technology using standard rules. 

 
6/27/2007                                                                  Rev 0.1                                                                                           1/82 
 
This is preliminary information on a new product in development or undergoing evaluation. Details are subject to change without notice 

批注 [S1]:  MAIN Features, 
Review and add/remove if 
needed. 

批注 [S2]: Overview summary



LOONGSON 2F                                                                                                         

2/82 

1. Product Overview 
 

The Loongson2F is an evolution of the Loongson2E with the enhanced I/O and memory accessing 
bandwidth and a software work frequency changing scheme and compatibility to MIPS64.  

The Loongson2F has a standard 32-bit PCI/PCI-X interface, a standard 64-bit DDR2 interface, an 8/16-
bit Local IO interface, a 4-bit GPIO interface and an enhanced processor core developed from Loongson2E.  

The Loongson2F is intended to be build into a system via standard PCI/PCI-X bus. It can both act as a 
master or a target PCI/PCI-X as device/host.  

The Loongson2F is also intended to achieve higher memory accessing bandwidth by utilizing a 64-bit 
DDR2 memory controller. 

The Loongson2F is expected to have better power management ability by using a software 
manageable work frequency changing scheme. The operating system can utilize this feature to change the 
processor frequency according to the workload. 

The Loongson2F integrates a video accelerate module in its write data path to PCI/PCI-X controller. 
Accompany with software driver, the video accelerate module can transfer YUV format video data to RGB 
format and do zoom action automatically. This can greatly reduce the processor's work load when the 
system utilizes a simple VGA controller. 

 
 

 

The cores are centered on 2x2 AXI cross bar with 128-bit width data bus. The CPU core and PCI/PCI-X 
slave takes up two master ports, DDR2 controller one slave port, and all other modules including the 
PCI/PCI-X master share one slave port.  

 

 
 
 
1.1 CPU Core 

 

Loongson2F CPU core is a four-issue nine-stage general-purpose RISC microprocessor that 

implements the 64-bit MIPS instruction set. 

The features of this CPU core include: 

 Four issue 

 Nine stage 

 Out of order executing 

批注 [S3]: Detail overview of 
the G2F 

批注 [S4]:  This block diagram 
is not details enough.  



 
 

 Two fix-point units 

 Two float-point units 

 64-entry reorder buffer 

 24-entry load-store queue 

 16-entry fix-point issue queue 

 16-entry float-point issue queue 

 64-entry data TLB 

 8-entry instruction TLB 

 64KB instruction L1 cache, 4way set associative 

 64KB data L1 cache, 4way set associative 

 512KB L2 cache, 4way set associative 

 2K-entry BHT 

 32-entry BTB 

 

 
1.2 AXI Crossbar 
 

The AXI Crossbar provides a 2x2 interconnection compatible with the AMBA AXI protocol. The features 
of the crossbar include: 

 128bit, full-pipelined data-path. 

 Up-to-4 asynchronous FIFOs to transfer signals between different clock domains. 

 Up-to-4 programmable address windows for individual AXI Master. 

 
1.3 DDR2 SDRAM Controller 
 

The built-in memory controller of Loongson2F processor fully conforms to DDR SDRAM industry 

standard JESD79C. All memory read/writes are implemented according to JESD79C specification. 

The features of this memory controller include: 

 Fully pipelined command read and writes data interfaces to the memory controller. 

 Advanced bank look-ahead features for high memory throughput. 

 Interface to a standard AXI port. 

 A programmable register interface to control memory device parameters and protocols including 

auto pre-charge. 

 Full initialization of memory on memory controller reset. 

 Built-in adjustable Delay Compensation Circuitry (DCC) for reliable data sends and captures timing. 

 ECC functionality with single-bit and double-bit error reporting and automatic correction of single-bit 
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error events. Programmable reporting and correction. Programmable removal of ECC storage. 

 Programmable memory data path size of full memory data width or half memory data width. 

 Clock frequencies form 113MHZ to 333MHZ supported. 

 
1.4 Video Accelerator 
 

The Video Accelerator supports the standard yuv444 and yuv422 video format. With the cooperation of 
software, the data of YUV format can be translate to RGB format. Besides, Video Accelerator can perform 
auto-zoom with little software intervention. 

 
1.5 PCI/PCI-X Controller 

 
The PCI/PCI-X controller conforms to both PCI 2.3 and PCI-X 1.0 specification. Its features include: 

 Pin selectable host or satellite mode 
 32-bit bus width 
 Support fast back to back as a target 
 Support dual address cycle 
 8 outstanding master request 
 4 delay-split read request 
 Support PCI-X 133 

 
1.6 PCI/PCI-X Arbiter 
 

The PCI/PCI-X arbiter follows both PCI and PCI-X specification. Including following features: 
 Two-level round-robin arbitration theme 
 Bus parking 
 Bad device detect and isolation 

 
1.7 Local Bus 
 

The local bus provides a simple bus interface for system boot ROM and IO device. The interface is 
designed for chip-connect simplicity.  
 

1.8 Interrupt Controller 
 

12 pins are available for chip interrupt. Including 4 dedicated interrupt pin, 4 PCI interrupts and 4 GPIO 
capable of interrupt triggering. Each pin can be individually configured as level/edge sensitive and masked 
out.  
 

 



 
 

2. SoC Architecture  
 
The expandable Loongson SoC architecture consists of two stages: the crossbar switch which 

interfaced with high-performance IP blocks such as Loongson 2x, DSP, DDR2, PCI Express; and 

the share bus which is connected with low-speed IP blocks such as Loongson 1x, PCI and Local 

Bus. The Loongson SoC adopts the AXI interface specification for its crossbar switch ports and 

AHB standard for its share bus interfaces. The AHB bus is connected with the AHB2AXI Bridge, 

as a standard AXI interface, as shown in the figure below. 

 

 
     

This architecture offers scalability and configurability. Fist of all, the number of ports is 

configurable for both the AXI crossbar switch and the AHB bus. The AXI stage supports up to 4 

master AXH devices which can be a Loongson 2x, a DSP (codec IP), a AHB master port and a 

high-speed I/O such as PCE Express or Hyper Transport; and up to 4 slave AXI devices which can 

be a AHB slave port, a DDR2 port, a high-speed I/O port such as PCI Express or Hyper Transport 

and other high-speed ports. Second, individual ports are configurable in synchronous or 

asynchronous transmission mode, thus eliminating the problem on signal transmission due to the 

clock domain crossing (CDC), to meet the requirements of other IP blocks. Further more, 

parameters including FIFO items and arbitration logic are dynamically configurable according to 

the specific features of other IP blocks.   

Its core architecture includes three sections: the crossbar switch in the AXI interface (AXI 

switch module), the bridge between AXI and AHB (AXI2AHB) and the AHB bus and its arbiter 

(AHB module). Only AXI switch module is available in the L2F. 
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2.1 AXI Switch Module 
The AXI switch module is connected to IP blocks via AXI interfaces, with built in arbitration and 

routing logic. Seeing the diversity trend of IP blocks, special attention is paid to the design of the 

arbitration and addressing logic in terms of customization of hardware specification and software 

programmability. One AXI master may access multiple slaves. For example, a CPU core needs to 

access DDR, PCI and other interfaces. In turn, a slave may be accessed by multiple masters. For 

example, a DDR interface can be accessed by a CPU core, PCI master and other IP blocks. 

Typically, Master IP blocks have well-established specifications for interfaces. However, some 

slave IP blocks have some certainties in interface specifications, like the configurable number of 

AXI interfaces, built-in arbitration logic, etc. 

 

The AXI Switch Module consists of AML (AXI-Master-Link) and ASL (AXI-Slave-Link). The 

module also includes a register module used for software-management/-configurability of AML and 

ASL sumodules. The AML is connected with the Master using AXI Slave specifications, which 

provides buffer and addressing. It requires a corresponding software-configurable register to 

configure address windows that match accessible AXI Slaves in one-to-one and multiple-to-one 

mode. The AML will decode and select based on the address windows. The address space is 

determined by the base address, size and local base address. With 4 segments of address pace at 

most, one AML needs 12 registers. The ASL is connected with the Slave through the AXI Master 

specifications, providing arbitration and Slave service requests. The register module receives write 

and read requests on configuration of the registers of the AXI Switch Module, such configuration of 

address windows in the AML module. The AXI specifications define that every AXI interface has 

five channels: a Read Address, a Read Data, a Write Address, a Write Date and a Write Response. 

All the channels have the same 128-bit data width, 64-bit address width, and 8-bit ID width. The ID 

includes global ID which is determined by structure and interconnected logic, and local ID which is 

internally decided by the master IP. While allowing for multiple masters and requests, and out-of-

order completion, the ASL uses ID to determine the address route along which data will return. The 

ID itself contains logic and topology information that is transparent to slave IPs. How to assign and 

manage ID:  

1. Master IP starts a new transaction, when the AXI interface ID contains only local ID 

information. The AML sends the local ID domain to the ASL.  

2. After receiving the transaction, the ASL uses the logic and topology to determine the 

global ID and put it together with the local ID. Then the resulting ID is transmitted to the 



 
 

slave IP. 

3. The slave IP returns the data with an ID to ASL. In turn, the ASL sends the ID to the AML 

that corresponds to the global ID domain.     

4. The AML masks and returns the global ID to the Master IP。 

 

In the above process, the master adopts the address mode. The assignment of global ID is 

transparent to the master. 

The relationship between the AML and ASL is asker and server. The interface signaling still 

uses the AXI interface specifications. The AML buffers a request from the AXI master until next 

data beat comes when it determines the destination ASL port based on the access address. The ASL 

responds to a read/write request from a AML through the arbitration. The communication between 

AML and ASL is consistent with the interface in terms of data, address, and ID bit-width. Because 

the AML and ASL are interconnected with a crossbar switch, the signals from all the AML ports are 

delivered to four ASL ports simultaneously. For convenience of identification, the signals between 

the four AXL ports and the four master devices are prefixed with m0_, m1_, m2_, m3_; these 

between the four slave devices and AXI switch, with s0_, s1_, s2_, s3_; these from the AML to 

ASL, with aml0_, aml1_, aml2_, aml2_; these from the four ASL to AML, with asl0_, asl1_, asl2_, 

asl3_.The Loongson SoC architecture AXI bus signals are named in small letters. 

 

2.1.1 AML Design 
The AML buffers a write\read request from the AXI master and then decides the corresponding 

ASL module based on the configurable address windows. Each AML contains 4 window addresses 

each of which are software-configured to correspond to a certain AXI slave. The address decoding 

logic transmits the request to the corresponding ASL. The window address is configurable as low as 

1MB, for a minimum number of address bits to compare. The Loongson SoC architecture has a 

128-bit AXI data width (max), resulting in 128-bit of write data buffer. 

To decouple the AXI master and AXI switch pipelines, the AML provides a two-item buffer 

request queues for read and write requests respectively. A request from the AXI crossbar switch 

pipeline first joins the request queue, and then one of the items is transmitted to the corresponding 

ASL after windows comparison.  
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2.1.2 ASL Design 
Similarly, the interface between the ASL and AML implements AXI protocols, with separate 

channels and arbitration logic for read and write requests. After the arbitration process, the ASL 

buffers and transmits a request from various AML modules to the AXI slave. 

The response from the AXI slave is buffered at the ASL for beat before going to the AML for 

arbitration. The corresponding AML port is identified immediately since the response signal 

contains the requesting AXI master ID. Similarly, the there are two items in the buffer when the 

ASL receives a response from the AXI slave.    
 
2.1.3 Asynchronous Interface 
For an asynchronous interface, the clock signal converts between the AML and ASL. Multiple 

asynchronous request sources are synchronized to the slave clock domain for arbitration. So the 

ASL and AXI slave share the same clock source. The request from different clock domains are 

processed at the AML module which share the same clock source with the master. Before 

interoperating with the ASL, the AML signal has to be synchronized with the ASL by an 

asynchronous FIFO. Repeat the same process when data returns. With the overhead of 

asynchronous signal conversion, a higher FIFO depth might be needed to minimize the loss in 

performance. The FIFO is configurable in bit width and depth at RTL level.  

 

2.1.4 Access Sequence 
The AXI switch has no constraints on read sequence and enables out-of-order execution. 

However, because the write address and data are traveling along different paths, the some of the 

buffer channels could be locked up without limitations. Therefore some limitations are imposed on 

the master write operation. According to the AXI protocol, the slave supports the master out-of-

order write by limiting the depth of out-of-order write or the number of out-of-order write 

operations. The master out-of-order write is forbidden when there is no available slave information. 

In other words, the master is required to transfer the write address in the same sequence as the write 

data, of course, without need for simultaneity. Now our masters are designed for the same sequence. 

Actually, both the write addresses and the write data are put in position beforehand, even at the 

same time, thus eliminating the need for out-of-order transfer. However, in our crossbar switch, the 

slave port receives and transmits write from 4 masters and transfers to the slave IP blocks. For the 

slave, this is a type of out-of-order write that takes place among multiple masters. Some support is 

needed to avoid the lockup effect. For example, when Master 1’s write address arrives earlier than 



 
 

its write data, it seizes one of the buffer entries in the slave port. If only one entry is available, the 

slave port will not receive other write address but wait for the corresponding write data. Just then 

Master 2’s write data arrives and enters the slave port. Now the crossbar switch cannot transmit to 

the slave IP block. It has no more available buffer entry to receive Master 1’s write data it is 

awaiting, either. The lockup takes place.    

Solving this problem, the Loongson SoC builds a write operation list at the slave port of the AXI 

crossbar switch, which is used to control the reception and transmission of write data, preventing 

the buffer in the slave side from seizing by the write data that the slave IP block is not ready to 

receive. This is done by recording all the write address requests that the slave IP block have 

received to this write operation list and allowing the write data matching these recorded requests to 

enter the slave section of the crossbar switch, ensuring all these write data are received by the slave 

IP block without taking up the buffer in the slave section of the switch. Once the last write data 

request arrives, these write operations are deleted from the write operation list, thus overcoming the 

lockup due to out-of-order writes among different masters.  
 
2.1.5 Bridge Module for Data Width Conversion 
The crossbar switch reaches 128 bits in both the AXI interface and internal data width in 

consideration of: a) today, all the memory modules sold in the market are 64-bit DDR/DDR2, so 

128-bit data is returned per beat. The adoption of 128-bit data width makes it possible to prevent the 

delay occurred when the CPU accesses the memory because of the data width conversion; b) So far 

the L2x provides 64 bit of access channels for (L1 and registers as well as L1 and L2), which is 

scalable to 128 bits at most. For this reason, 128-bit bandwidth is sufficient; c) a 128-bit crossbar 

switch offers moderate performance and high cost-effectiveness, compared with lower 64-bit and 

expensive 256-bit bandwidth. 

An IP block with data width higher or lower than 128 bits has to connect to the AXI crossbar 

switch module through a bridge module where its data width is converted to standard 128 bits 

required by the AXI switch. The bridge module, which provides data width conversion and protocol 

translation, is available in master-link interfacing to AXI master and slave link interfacing to AXI 

slave. The data width conversion scenarios include:  

 A request higher than 128 bits from the AXI Master can be transferred in the Burst mode 

including multiple Transfers as defined in the AXI specifications.  

 A request lower than 128 bits from the AXI Master can be assigned a transfer size using 

the SIZE Zone of the AXI protocol.  

 The return data higher than 128 bits from the AXI Slave can be transferred in the Burst 
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mode including multiple Transfers as defined in the AXI specifications.  

 When return data from the AXI Slave is lower than 128 bits, the allocation of the data on 

the 128-bit data bus is determined by the transfer address. 

When the AXI Master (L2x) has to convert its data path width from 128 bits at the AXI Switch to 

32 bits at the AXI Slave (PCI), LEN and SIZE conversions are needed at the AXI Slave. Typically, 

in order to link modules with different data path widths, the bridge module needs a specific queue 

for data width conversion.  

 

2.1.6 Configuration Register Module 
 This module allows for configuration of address window registers. These windows each 

include three 64-bit registers: BASE which is aligned to MB (megabyte), MASK which adopts a 

format similar to the netmask with a high level of 1, and MMAP where the two low levels represent 

the number of the appropriate ASL. The assignment of these configuration registers is done using 

64-bit two-word write operation. 

Window Hit Formula：(IN_ADDR & MASK) == BASE 

Target Port Number：MMAP [1:0] in hit window 

New Address Conversion：OUT_ADDR = (IN_ADDR & ~MASK) | {MMAP [63:20], 20’h0} 

 
Address Name Description 

3ff0 0000   M0_WIN0_BASE base address of Window 0 of Mater 0  
3ff0 0008   M0_WIN1_BASE base address of Window 1 of Mater 0 
3ff0 0010   M0_WIN2_BASE base address of Window 2 of Mater 0 
3ff0 0018   M0_WIN3_BASE base address of Window 3 of Mater 0 
3ff0 0020   M0_WIN0_SIZE Mask of Window 0 of Mater 0 
3ff0 0028   M0_WIN1_SIZE Mask of Window 1 of Mater 0 
3ff0 0030   M0_WIN2_SIZE Mask of Window 2 of Mater 0 
3ff0 0038   M0_WIN3_SIZE Mask of Window 3 of Mater 0 
3ff0 0040   M0_WIN0_MMAP Mapped base address of Window 0 of 

Master0 
3ff0 0048   M0_WIN1_MMAP Mapped base address of Window 1 of 

Master0 
3ff0 0050   M0_WIN2_MMAP Mapped base address of Window 2 of 

Master0 
3ff0 0058   M0_WIN3_MMAP Mapped base address of Window 3 of 

Master0 
3ff0 0060   M1_WIN0_BASE base address of Window 0 of Mater 1  
3ff0 0068   M1_WIN1_BASE base address of Window 1 of Mater 1  
3ff0 0070   M1_WIN2_BASE base address of Window 2 of Mater 1 
3ff0 0078   M1_WIN3_BASE base address of Window 3 of Mater 1 
3ff0 0080   M1_WIN0_SIZE Mask of Window 0 of Mater 1 



 
 

3ff0 0088   M1_WIN1_SIZE Mask of Window 1 of Mater 0 
3ff0 0090   M1_WIN2_SIZE Mask of Window 2 of Mater 1 
3ff0 0098   M1_WIN3_SIZE Mask of Window 3 of Mater 1 
3ff0 00a0   M1_WIN0_MMAP Mapped base address of Window 0 of 

Master1 
3ff0 00a8   M1_WIN1_MMAP Mapped base address of Window 1 of 

Master1 
3ff0 00b0   M1_WIN2_MMAP Mapped base address of Window 2 of 

Master1 
3ff0 00b8   M1_WIN3_MMAP Mapped base address of Window 3 of 

Master1 
3ff0 00c0   M2_WIN0_BASE base address of Window 0 of Mater 2 
3ff0 00c8   M2_WIN1_BASE base address of Window 1 of Mater 2 
3ff0 00d0   M2_WIN2_BASE base address of Window 2 of Mater 2 
3ff0 00d8   M2_WIN3_BASE base address of Window 3 of Mater 2 
3ff0 00e0   M2_WIN0_MASK Mask of Window 0 of Mater 2 
3ff0 00e8   M2_WIN1_MASK Mask of Window 1 of Mater 2 
3ff0 00f0   M2_WIN2_MASK Mask of Window 2 of Mater 2 
3ff0 00f8   M2_WIN3_MASK Mask of Window 3 of Mater 2 
3ff0 0100   M2_WIN0_MMAP Mapped base address of Window 0 of 

Master2 
3ff0 0108   M2_WIN1_MMAP Mapped base address of Window 1 of 

Master2 
3ff0 0110   M2_WIN2_MMAP Mapped base address of Window 2 of 

Master2 
3ff0 0118   M2_WIN3_MMAP Mapped base address of Window 3 of 

Master2 
3ff0 0120   M3_WIN0_BASE base address of Window 0 of Mater 3 
3ff0 0128   M3_WIN1_BASE base address of Window 1 of Mater 3 
3ff0 0130   M3_WIN2_BASE base address of Window 2 of Mater 3 
3ff0 0138   M3_WIN3_BASE base address of Window 3 of Mater 3 
3ff0 0140   M3_WIN0_MASK Mask of Window 0 of Mater 3 
3ff0 0148   M3_WIN1_MASK Mask of Window 1 of Mater 3 
3ff0 0150   M3_WIN2_MASK Mask of Window 2 of Mater 3 
3ff0 0158   M3_WIN3_MASK Mask of Window 3 of Mater 3 
3ff0 0160   M3_WIN0_MMAP Mapped base address of Window 0 of 

Master 3 
3ff0 0168   M3_WIN1_MMAP Mapped base address of Window 1 of 

Master 3 
3ff0 0170   M3_WIN2_MMAP Mapped base address of Window 2 of 

Master 3 
3ff0 0178   M3_WIN3_MMAP Mapped base address of Window 3 of 

Master 3 
 

In addition, when none of the four address windows is hit because of reading an invalid 

address caused by CPU’s speculation execution, to prevent the system from crashing, the 
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configuration register module return all-zero data to the CPU. 

 

2.2. AXI2AHB Bridge 
    Not available on L2F. 

 

2.3. AHB Bus Module 
    Not available on L2F. 
 
 
 



 
 

3. Processor Core Improvement 
 

The L2F’s processor core features great architecture improvement, including:  

 

a) Optimized power consumption by minimizing unwanted bit flipping of register stacks, L1 and L2 

Caches and other flip-flops and by using dynamic frequency conversion logic to reduce the power 

consumption when the CPU is free;  

 

b) MIPS compatible design. Compatible with MIPS III, the L2F has to move some of custom 

operations to SPECIAL 2 and COP2’s custom operation code space;  

 

c) AXI compatible processor interfaces. 

 

d) Performance improvement through allowing cache block replacement command to be executable 

in user mode, as well as partial delay optimization. 

 

 

3.1 Optimized Power  
The L2F delivers lower power by minimizing unwanted bit flipping of register stacks, L1and L2 

Caches, and using dynamic frequency conversion logic designs. 

The reduced bit flipping is achieved by refusing to read on the register stacks when the instruction 

operand is 0 or immediate. In the L2E, two operands are read from the register stacks for each 

instruction. They are src1 and scr2. Our study shows about 70% of fixpoint instruction src2 uses 

immediate or 0 for operand and this is true of 10-30% of src1. It is necessary to read on the register 

stacks at the operand of immediate or zero. In this way, the L2F determines whether Read Enable of 

the register stack should be activated by judging the operand immediate or zero.  

The same way is applied in L1 Cache to reduce the undesired read operations to the cache. In 

the L2E, if the load/store bus（dmemref）is valid, the CPU can read from 16 blocks of RAM of 4 

cache banks simultaneously. Each RAM is 512×64 in size. In contrast, L2F allows for more refined 

access to reduce unnecessary read to reduce power consumption, including: 

 Typical store is done in dmemref through simple access to the tag section, without need of 

access to the data section. 

 Typical load is done in dmemref through simple access to the appropriate 64 bits instead of 

the whole 256 bits of each bank, or by access to only four blocks of cache RAM per cycle. 

批注 [S6]: Samecomments. 
From your doc. Improvement 
vs L2E. 
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main improvments 
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 CACHE25 is done in dmemref by accessing only four blocks of cache RAM per cycle.  

 CACHE1 and CACHE21 are done in dmemref through reading all the 16 blocks of cache 

RAM per cycle. 

 REPLACE and LOOKU are done in drefill through access to all the 16 blocks of cache 

RAM per cycle. 

This supplicated control of RAM Read Enable provides around 80% power reduction for L1 cache 

RAM.  

For reducing the power consumption of L2 cache, L2f includes an additional software-controlled L2 

cache Read Enable/Disable, which is implemented through adapting scache and cache2mem, the 

two modules of the processor core: a) scache: when L2 cache is available, the inclusion relation 

between L2 and L1 caches ensures the cache block written back from L1 is hit in L2 cache. When 

L2 cache is disabled, a replacement from L1 cache and a writeback incurred due to L1 cache 

instruction have to be copied out through the arbiter module. When L2 cache is disabled, if the bit 

of dmemwrite_w is dirty, then after one beat, the data and address are transferred from the 

dmemwrite bus to the smemwrite bus which, the write request bus of the cache RAM, provides 

replacement/writeback for the L2, and provides the same function for the L1 when the L2 is 

disabled. b) cache2mem: when L2 is disabled, the L1 internal request is put into SCMISS mode 

immediately after going into the missqueue. Without the need to issue a find (LOOKUP) or 

writeback and invalid （WTBKINV）request to the L1, diwtbkcntis set at 11. Similarly, without 

the need to refill the L2, srefillcnt is set at 11.  

For software compatibility, when the L2 is disabled, the Loognson 2F support the L2 cache 

instructions, which, however is not executable. After entering the missqueue, the L2 cache 

instructions are set in the RDY, with the srefillcnt set at 11. In the RDY state, the chip sends a 

message along the refill bus to the CP0 queue that appropriate instructions has been executed. If the 

L2 cache is disabled, it is necessary to determine whether the replacement in the data cache can be 

written back to the arbiter module (without write buffer) or the buffer (with the buffer). The signal 

wait_cache_yes is generated depending on whether the writeback incurred by the L1 instruction can 

be copied to the arbiter module (without write buffer) or the buffer (with the buffer). This signal 

will be zero only if the queue is empty and write is allowed without any ongoing writeback. 

Furthermore, a thorough study shows the availability of flip-flops that can use pipeline enable 

signals for input enable control in the Loongson 2F. So thousands of such flip-flops are optimized 

for pipeline enable signal application.  

The Loongson 2F is still designed with dynamic frequency conversion logic, making it possible to 



 
 

reduce power consumption by scaling the main frequency when the OS is not in use. Controlled by 

software, the processor core runs at 0/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8 and 8/8 of operating frequency. It 

is achieved by maintaining div_count, a 8-bit shift counter at the PLL output clock which can 

dynamically adjust the number of 1 within the device based on a 3-bit control signal freq_scale. 

When freq_scale=011, for example, the processor core clock runs at 4/8 of the PLL clock frequency, 

and there are four shifting“1s” in the 8-bit div_count. The core clock is the result of an individual 

bit of div_count NAND the PLL clock phase.  

 

3.2 MIPS Compatible Design 
MIPS only defined the user mode instructions in its early MIPS Architectures such as MIPS I, 

MIPS II, MIPS III, MIPS IV and MIPS V. Later the company provided both user mode and kernel 

mode in their new specifications such as MIPS32 and MIPS64. Now MIPS only licenses and 

supports MIPS32 and MIPS64. 

MIPS compatibility is a main goal of the Loongson 2F design. It is designed to compatible with 

MIPS III. Implementing all the features described in the MIPSIII, Loongson 2E has some of custom 

instructions occupied the MIPS-reserved instruction slot. So in the 2F, these custom-tailored 

instruction opcodes need to remove to the user instruction slot (COP2 or Special2). They include 

instructions as follows: 

 The 2E implemented MOVZ and MOVN, the instructions designed for MIPS IV instead of 

MIPS III. Compatible with MIPS64 specifications, eliminating the need of modifications.  

 The media instructions take the COP2 slot reserved for user, compared with the 2E whose 

COP1 instruction slot is taken up. 

 The MIPS architecture implements floating-point multiply-add instructions in MIPS IV 

and later versions, while the 2E realizes the floating-point multiply-accumulate instructions 

because the multiply-add is not available in MIPS III, resulting in incompatibility. For the 

2F, the floating-point multiply-accumulate opcode need to remove to Special 2, the 

customer-reserved slot.    

 In the 2E, the fmt domain for fixpoint instruction paired-single is used by media 

instructions, leading to incompatibility with MIPS. Align the 2F. 

 Considering the fixpoint multiply-division instructions use HI and LO registers in the 

previous MIPS instruction set, the 2E implements the instruction using general-purpose 

registers for target registers. Remove these opcode to Special 2 instruction slot in the 2F.    
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Finally, these changes in instruction format do not impact the 2F’s internal opcode and data paths. 

For example, the 2F uses COP2 slot for media instruction, but internally continues to use COP1 

opcode slot and data paths.    

 

3.3. AXI-Compatible Interface Design 
The Loongson 2F implements extendable SoC interconnection architecture and L2 cache with 

configurable Enable/Disable using the AXI interface specifications. To achieve these features, we 

have to modify cache2mem, a module of the processor core.  

The configurable Enable/Disable is realized adding a disable_scache signal to the L2 cache. If the 

value of the signal is 1, the L2 cache is disabled; otherwise, the L2 is available. When the initial 

value of disable_scache equals 0, this feature can be dynamically configured through OS. 

In the Loongson SoC architecture, the processor core operates as a master and implements the AXI 

interface specifications. The AXI interface protocols include five channels: read address, read data, 

write address, write data and write response. The 2E incorporates the suncache, smemread, 

smemwrite, srefill0 and srefill1 buses into the five AXI channels.  

In the 2F, suncache’s read and smemread are merged into the read address channel; suncache’s 

write and smemwrite are merged, with write address separate from write data, into write address 

channel and write data channel; srefill0 and srefill1 combined into read data channel. In the 

Loongson SoC architecture, all the channels share a uniform data width of 128 bits, the same 

address width of 64 bits and ID length of 8 bits. The processor core is also modified in terms of 

domain widths. The diagram below provides the connection between CACHE2MEM, SCACHE 

and Arbiter.  



 
 

 
 

  

 

 

3.4. Performance Optimization 
During the implementation of Loongson 2E’s Java virtual machine, it was found that great time was 

needed in refreshing the cache, and much of the time was consumed during system call (because 

cache instruction belongs to kernel instruction set, user code has to read the cache through system 

call). Therefore, a bit called user_mode_cacheop (DIAG [8]) is included in the DIAG control 

register of the 2F. When the bit is set to 1, the user mode program is allowed to use the cache 

refresh instructions (CACHE1、CACHE17、CACHE21…). 

In addition, some of the delays are optimized for the 2F’s physical paths. The delay-optimized 

section is mainly included in the CPU0 and fixpoint queues, dealing with forward speculation 

cancel.  
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4. DDR2 SDRAM Memory Controller Design 
 
4.1. Overview 

The 2F integrates a built-in memory controller fully compatible with DDR2 SDRAM standard 

(JESD79-2B). Its main features as follows: 

 Fully pipelined instruction, read/write on the interface 

 Fusion and sort of memory instructions for higher overall bandwidth. 

 Standard AXI Interface 

 Configuration register read/write ports enable changes in basic memory parameters  

 Built-in dynamic delay compensation (DCC) circuit for higher data transmission and 

reception reliability. 

 ECC that detects 1-bit error and 2-bit error on the data path and automatically corrects 1-bit 

error. 

 Operation frequency range: 133MHz-333MHz 

 
4.2. Memory Control ASIC Interface and Memory Interface Signal  

The memory control ASIC interface signals include AXI-certified interface signal, control 

signal and DDR2 SDRAM memory interface signal. Two additional pins are included for higher 

read accuracy. For signal definitions, see the table below: 

 
Name I/O Description 
Memory Controller ASIC Interface Signals（AXI Section） 

aclk I AXI interface clock 
areset I AXI interface reset  
arid[7:0] I Read request ID 
araddr[39:0] I Read request address 
arlen[3:0] I Read request length 
arsize[3:0] I Read request size 
arburst[1:0] I Read request burst type 
arvalid I Read request valid 
arready O Read request ready 
rid[7:0] O Read data ID 
rdata[127:0] O Read data 
rresp[1:0] O Read data response 
rlast O Read last data indication 
rvalid O Read data valid 
rready I Read data reception ready 
awid[7:0] I write request ID 
awaddr[39:0] I write request address 
awlen[3:0] I write request length 

批注 [S7]: This chapter  will 
not be present in L2E 
documents. 



 
 

awsize[3:0] I write request size 
awburst[1:0] I write request burst type 
awcache[3:0] I write request cache mode 
awvalid I write request valid 
awready O write request reception ready  
wid[7:0] I write data ID 
wdata[127:0] I write data 
wstrb[3:0] I write data strobe 
wlast I Write last data indication 
wvalid I write data valid 
wready O write data ready 
bid[7:0] O Write response ID 
bresp[1:0] O Write response type 
bvalid O Write response valid 
bready I Write response reception ready 

Memory Controller ASIC Interface Signals (Control Signal Section)  
controller_int O Memory controller interrupt output  
dll_lock O Memory controller DLL lock indication 
ecc_dataout_corrected O ECC 1-bit error indication (corrected) 
ecc_dataout_uncorrected O ECC 2-bit error indication (uncorrected) 
q_almost_full O Command queue full indication 

refresh_in_process O Memory module in process of refresh 
indication 

srefresh_enter I Memory module enters self-refresh control 
scanen I Test mode enable 
scanin I Test input 
scanout O Test output 
scanmode I Test mode select 
test_rd_clk I Test read clock input 
test_wr_clk I Test write clock input 
param_75_ohm_sel O Controller Pad termination resistor select 
tsel O Controller termination resistor enable 
config_reg_enable I configuration register access control 

 
Memory Controller DDR Interface Signals 

dq[72:0] IO DDR2 SDRAM data bus 
dqs[8:0] IO DDR2 SDRAM data strobe 
dqs_n[8:0] IO DDR2 SDRAM reverse data strobe 
dqm[8:0] O DDR2 SDRAM data mask 
addr[14:0] O DDR2 SDRAM address bus 
ba[2:0] O DDR2 SDRAM Bank address  
we# O DDR2 SDRAM write enable 
cas# O DDR2 SDRAM column select enable 
ras# O DDR2 SDRAM row select enable 
cs[3:0]# O DDR2 SDRAM chip select 
cke[1:0] O DDR2 SDRAM clock enable 
clk[5:0] O DDR2 SDRAM noninvert clock output 
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clk_n[5:0] O DDR2 SDRAM invert clock output 

odt[3:0] O DDR2 SDRAM onchip terminating resistor 
select 

gatein I Data reception indication 
gateout O Data reception indication 

 
4.3. Memory Controller Configuration Registers 
The memory controller includes 26 64-bit configuration registers. One register contains data that 

may form multiple parameters, a single parameter or only partial parameter. The table below 

provides these configuration registers and their parameter information (all the unused bits are 

reserved). 

 

Parameter Name Bit Defau
lt Range Description 

CONF_CTL_00[31:0]  Offset: 0x00 

AREFRESH 24 0x0 0x0-0x1
Issue an auto refresh command to 
memory based on the 
auto_refresh_mode parameter setup 

AP 16 0x0 0x0-0x1 Enable memory controller auto-refresh? 

ADDR_CMP_EN 8 0x0 0x0-0x1 Allow command requeueing logic to 
check address conflict? 

ACTIVE_AGING 0 0x0 0x0-0x1
Record the ageing commands in the 
queue avoiding starvation of low 
priorities? 

CONF_CTL_00[63:32]  Offset: 0x00 

DDR2_SDRAM_MODE 56 0x0 0x0-0x1 Memory Controller DDRI and DDRII 
mode setup 

CONCURRENTAP 48 0x0 0x0-0x1
Allow controller auto precharge one 
bank while issuing a command to 
another bank? 

BANK_SPLIT_EN 40 0x0 0x0-0x1 Allow command requeueing logic to 
split banks? 

AUTO_REFRESH_MODE 32 0x0 0x0-0x1 Select when to issue an auto-precharge, 
next burst or command boundary? 

CONF_CTL_01[31:0]  Offset: 0x10 
ECC_DISBALE_W_UC_E
RR 24 0x0 0x0-0x1 Disable ECC when an unrecoverable 

error is found in R/M/W? 
DQS_N_EN 16 0x0 0x0-0x1 Enable DQA difference? 
DLL_BYPASS_MODE 8 0x0 0x0-0x1 Enable DLL BYPASS Mode? 
DLLLOCKREG 0 0x0 0x0-0x1 Indicate if DLL locks? (Read only) 
CONF_CTL_01[63:32]   Offset: 0x10 

FWC 56 0x0 0x0-0x1

Is a mandatory write check required? If 
yes, memory controller will store in 
memory XOR of value and data 
specified in the xor_check_bits. 



 
 

FAST_WRITE 48 0x0 0x0-0x1

Allow controller to enable fast write? If 
yes, controller will issue a write 
command to memory module before 
receiving complete write data.  

ENABLE_QUICK_SREFR
ESH 40 0x0 0x0-0x1

Enable quick self-refresh? If yes, 
memory will do self-refresh even if 
initialization does not end. 

EIGHT_BANK_MODE 32 0x0 0x0-0x1 Indicate if memory module has 8 banks. 
CONF_CTL_02[31:0]   Offset: 0x20 

NO_CMD_INIT 24 0x0 0x0-0x1 Issue other commands over tDLL time 
during memory initialization? 

INTRPTWRITENA 16 0x0 0x0-0x1
Interrupt previous read command with 
autoprechagre plus other read/write 
commands to the same bank?  

INTRPTREADA 8 0x0 0x0-0x1
Interrupt previous read command with 
autoprechagre plus other read 
commands to the same bank? 

INTRPTAPBURST 0 0x0 0x0-0x1 Interrupt current autoprecharge with 
other commands to another bank? 

CONF_CTL_02[63:32]    Offset: 0x20 

PRIORITY_EN 56 0x0 0x0-0x1 Enable command requeue logic to 
prioritize? 

POWER_DOWN 48 0x0 0x0-0x1

If yes, memory controller will close all 
the memory pages with precharge 
command to set clock enable low 
without transmitting all the received 
commands until this value is set back to 
0. 

PLACEMENT_EN 40 0x0 0x0-0x1 Enable command requeue logic? 

ODT_ADD_TURN_CLK_
EN 32 0x0 0x0-0x1

Insert a turn-around clock between the 
fast back-to-back read or write 
commands to different chip selects? 

CONF_CTL_03[31:0]    Offset: 0x30 

RW_SAME_EN 24 0x0 0x0-0x1
Allow command requeue logic to 
requeue write/read commands to the 
same bank? 

REG_DIMM_EN 16 0x0 0x0-0x1 Enable registered DIMM memory 
module? 

REDUC 8 0x0 0x0-0x1 Only use 32-bit data path? 

PWRUP_SREFRESH_EXI
T 0 0x0 0x0-0x1

Use self-refresh to exit power-down 
mode rather than memory initialization 
command? 

CONF_CTL_03[63:32]    Offset: 0x30 

SWAP_PORT_RW_SAME
_EN 56 0x0 0x0-0x1

Determine if the similar commands are 
swapped on the same port when 
swap_en is enabled?   

SWAP_EN 48 0x0 0x0-0x1 Swap a new highly prioritized command 
for an ongoing one when command 
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requeue logic is enabled? 
START 40 0x0 0x0-0x1 Initialize memory? 
SREFRESH 32 0x0 0x0-0x1 Self-refresh memory? 
CONF_CTL_04[31:0]    Offset: 0x40 

WRITE_MODEREG 24 0x0 0x0-0x1 Write EMRS register of memory 
module? 

WRITEINTERP 16 0x0 0x0-0x1 Define if a write burst can be interrupted 
by a read command. 

TREF_ENABLE 8 0x0 0x0-0x1 Enable self refresh inside the controller? 

TRAS_LOCKOUT 0 0x0 0x0-0x1 Issue auto-prechareg before the 
expiration of tRAS? 

CONF_CTL_04[63:32]    Offset: 0x40 

RTT_0 57:24 0x0 0x0-0x3 Define the on-chip termination 
resistance of memory module. 

CTRL_RAW 49:48 0x0 0x0-0x3 Set ECC detect and correction mode. 

AXI0_W_PRIORITY 41:40 0x0 0x0-0x3 Set priority for AXI0 port write 
command. 

AXI0_R_PRIORITY 33:32 0x0 0x0-0x3 Set priority for AXI0 port read 
command. 

CONF_CTL_05[31:0]    Offset: 0x50 

COLUMN_SIZE 26:24 0x0 0x0-0x7 Set margin between actual and max (14) 
numbers of column addresses. 

CASLAT 18:16 0x0 0x0-0x7 Set CAS latency value. 

ADDR_PINS 10:8 0x0 0x0-0x7 Set margin between actual and max (15) 
numbers of address pins. 

RTT_PAD_TERMINATIO
N 1:0 0x0 0x0-0x3 Set termination resistance for memory 

controller pad 
CONF_CTL_05[63:32]     Offset: 0x50 

Q_FULLNESS 58:56 0x0 0x0-0x7
Define a limit to the number of 
commands beyond which memory 
controller queue is considered full. 

PORT_DATA_ERROR_TY
PE 50:48 0x0 0x0-0x7 Define data error type on the memory 

controller ports. 

OUT_OF_RANGE_TYPE 42:40 0x0 0x0-0x7 Define the type of out-of-range access 
errors. 

MAX_CS_REG 34:32 0x4 0x0-0x4 Define the number of chip-selects used 
in controller. 

CONF_CTL_06[31:0]     Offset: 0x60 

TRTP 26:24 0x0 0x0-0x7 Define the number of cycles from 
memory read command to precharge.  

TRRD 18:16 0x0 0x0-0x7 Define the interval of the Active 
command to different banks 

TEMRS 10:8 0x0 0x0-0x7 Define emrs during memory 
initialization. 

TCKE 2:0 0x0 0x0-0x7 Define minimum CKE pulse width.  
CONF_CTL_06[63:32]     Offset: 0x60 
APREBIT 59:56 0x0 0x0-0xf Define which bit of address line is 



 
 

selected to send autoprecharge to 
memory. 

WRLAT 50:48 0x0 0x0-0x7
Define the time (based on clock cycles) 
from transmission of write command to 
reception of first data. 

TWTR 42:40 0x0 0x0-0x7 Define the required clock cycles from 
write to read command.  

TWR_INT 34:32 0x0 0x0-0x7 Define write recovery time for memory 
module. 

CONF_CTL_07[31:0]     Offset: 0x70 

ECC_C_ID 27:24 0x0 0x0-0xf Define source ID number for 1-bit ECC 
error. 

CS_MAP 19:16 0x0 0x0-0xf Define available chip-selects 

CASLAT_LIN_GATE 11:8 0x0 0x0-0xf
Define the time (measured in a half of a 
cycle) for which gate open is active 
when the read command returns data.  

CASLAT_LIN 3:0 0x0 0x0-0xf Define CAS Latency for memory 
module. 

CONF_CTL_07[63:32]     Offset: 0x70 

MAX_ROW_REG 59:56 0xf 0x0-0xf Define the actual number of row 
addresses. 

MAX_COL_REG 51:48 0xe 0x0-0xe Define the actual number of column 
addresses.  

INITAREF 43:40 0x0 0x0-0xf
Define the number of autorefresh 
commands required for system 
initialization. 

ECC_U_ID 35:32 0x0 0x0-0xf
Define the source ID for unrecoverable 
dual-byte errors. (Translator’s Note: 2-
bit errors?) 

CONF_CTL_08[31:0]     Offset: 0x80 

ODT_RD_MAP_CS3 27:24 0x0 0x0-0xf
Make its ODT termination resistance 
available in defining CS3 read 
command? 

ODT_RD_MAP_CS2 19:16 0x0 0x0-0xf
Make its ODT termination resistance 
available in defining CS2 read 
command? 

ODT_RD_MAP_CS1 11:8 0x0 0x0-0xf
Make its ODT termination resistance 
available in defining CS1 read 
command? 

ODT_RD_MAP_CS0 3:0 0x0 0x0-0xf
Make its ODT termination resistance 
available in defining CS0 read 
command? 

CONF_CTL_08[63:32]     Offset: 0x80 

ODT_WR_MAP_CS3 59:56 0x0 0x0-0xf
Make its ODT termination resistance 
available in defining CS3 write 
command? 

ODT_WR_MAP_CS2 51:48 0x0 0x0-0xf Make its ODT termination resistance 
available in defining CS2 write 
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command? 

ODT_WR_MAP_CS1 43:40 0x0 0x0-0xf
Make its ODT termination resistance 
available in defining CS1 write 
command?效 

ODT_WR_MAP_CS0 35:32 0x0 0x0-0xf
Make its ODT termination resistance 
available in defining CS0 write 
command? 

CONF_CTL_09[31:0]      Offset: 0x90 
PORT_DATA_ERROR_ID 27:24 0x0 0x0-0xf ID number of data error on the port. 
PORT_CMD_ERROR_TY
PE 19:16 0x0 0x0-0xf Type of command errors on port.  

PORT_CMD_ERROR_ID 11:8 0x0 0x0-0xf ID number of command errors on port. 
OUT_OF_RANGE_SOUR
CE_ID 3:0 0x0 0x0-0xf ID number of out-of-range access errors. 

CONF_CTL_09[63:32]      Offset: 0x90 

OCD_ADJUST_PUP_CS0 60:56 0x0 0x0-0x1f

Set OCD pull-up value for memory 
chip-select 0. Memory controller will 
issue an OCD adjustment command to 
memory module according this 
parameter value during initialization 
process. 

OCD_ADJUST_PDN_CS0 52:48 0x0 0x0-0x1f

Set OCD pull-down value for memory 
chip-select 0. Memory controller will 
issue an OCD adjustment command to 
memory module according this 
parameter value during initialization 
process. 

TRP 43:40 0x0 0x0-0xf Define the number of clock cycles 
required for memory precharge. 

TDAL 35:32 0x0 0x0-0xf
If auto-precharge is set, this parameter 
defines the number of clock cycles for 
auto-precharge and write recovery. 

CONF_CTL_10[31:0]      Offset: 0xa0 

AGE_COUNT 29:24 0x0 0x0-0x3f
Define initial aging value for the 
command requeue logic using ageing 
algorithm. 

TRC 20:16 0x0 0x0-0x1f
Define the number of clock cycles 
between Active commands to the same 
bank. 

TMRD 12:8 0x0 0x0-0x1f
Define the number of clock cycles 
required to configure a mode register 
inside memory modules. 

TFAW 4:0 0x0 0x0-0x1f Define tFAW for memory modules. 
CONF_CTL_10[63:32]      Offset: 0xa0 

DLL_DQS_DELAY_2 62:56 0x0 0x0-0x7f
Define % of delay for DQS2 when 
reading data, with an increase of 1/128 
of a clock cycle per time. 



 
 

DLL_DQS_DELAY_1 54:48 0x0 0x0-0x7f
Define % of delay for DQS1 when 
reading data, with an increase of 1/128 
of a clock cycle per time. 

DLL_DQS_DELAY_0 46:40 0x0 0x0-0x7f
Define % of delay for DQS0 when 
reading data, with an increase of 1/128 
of a clock cycle per time. 

COMMAND_AGE_COUN
T 37:32 0x0 0x0-0x3f

Define initial ageing value for each 
command when command requeue logic 
using ageing algorithm. 

CONF_CTL_11[31:0]      Offset: 0xb0 

DLL_DQS_DELAY_6 30:24 0x0 0x0-0x7f
1/128 Define % of delay for DQS6 
when reading data, with an increase of 
1/128 of a clock cycle per time. 

DLL_DQS_DELAY_5 22:16 0x0 0x0-0x7f
Define % of delay for DQS5 when 
reading data, with an increase of 1/128 
of a clock cycle per time. 

DLL_DQS_DELAY_4 14:8 0x0 0x0-0x7f
Define % of delay for DQS4 when 
reading data, with an increase of 1/128 
of a clock cycle per time. 

DLL_DQS_DELAY_3 6:0 0x0 0x0-0x7f
Define % of delay for DQS3 when 
reading data, with an increase of 1/128 
of a clock cycle per time. 

CONF_CTL_11[63:32]      Offset: 0xb0 

WR_DQS_SHIFT 62:56 0x0 0x0-0x7f
Define % of delay for clk_wr when 
writing data, with an increase of 1/128 
of a clock cycle per time. 

DQS_OUT_SHIFT 54:48 0x0 0x0-0x7f
Define % of delay for DQS when 
writing data, with an increase of 1/128 
of a clock cycle per time. 

DLL_DQS_DELAY_8 46:40 0x0 0x0-0x7f
Define % of delay for DQS8 when 
reading data, with an increase of 1/128 
of a clock cycle per time. 

DLL_DQS_DELAY_7 38:32 0x0 0x0-0x7f
Define % of delay for DQS7 when 
reading data, with an increase of 1/128 
of a clock cycle per time. 

CONF_CTL_12[31:0]      Offset: 0xc0 

TRAS_MIN 31:24 0x0 0x0-0xff
Define the minimum number of clock 
cycles for valid row address commands 
in memory modules.  

OUT_OF_RANGE_LENG
TH 23:16 0x0 0x0-0xff Define command length for out-of-range 

access.  

ECC_U_SYND 15:8 0x0 0x0-0xff Define the reasons for unrecoverable 2-
bit errors (read only). 

ECC_C_SYND 7:0 0x0 0x0-0xff Define the reasons for recoverable 1-bit 
errors (read only). 

CONF_CTL_12[63:32]      Offset: 0xc0 
DLL_DQS_DELAY_BYPA
SS_0 56:48 0x0 0x0-0x1ff Define the number of dqs0 delay lines in 

DLL bypass mode. 
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TRFC 47:40 0x0 0x0-0xff Define the number of clock cycles 
required for memory module refresh. 

TRCD_INT 39:32 0x0 0x0-0xff Define the number of clock cycles from 
RAS to CAS. 

CONF_CTL_13[31:0]      Offset: 0xd0 
DLL_DQS_DELAY_BYPA
SS_2 24:16 0x0 0x0-0x1 Define the number of dqs2 delay lines in 

DLL bypass mode. 
DLL_DQS_DELAY_BYPA
SS_1 8:0 0x0 0x0-0x1 Define the number of dqs1 delay lines in 

DLL bypass mode. 
CONF_CTL_13[63:32]      Offset: 0xd0 
DLL_DQS_DELAY_BYPA
SS_4 56:48 0x0 0x0-0x1ff Define the number of dqs4 delay lines in 

DLL bypass mode. 
DLL_DQS_DELAY_BYPA
SS_3 40:32 0x0 0x0-0x1ff Define the number of dqs3 delay lines in 

DLL bypass mode. 
CONF_CTL_14[31:0]      Offset: 0xe0 
DLL_DQS_DELAY_BYPA
SS_6 24:16 0x0 0x0-0x1ff Define the number of dqs6 delay lines in 

DLL bypass mode. 
DLL_DQS_DELAY_BYPA
SS_5 8:0 0x0 0x0-0x1ff Define the number of dqs5 delay lines in 

DLL bypass mode. 
CONF_CTL_14[63:32]      Offset: 0xe0 
DLL_DQS_DELAY_BYPA
SS_8 56:48 0x0 0x0-0x1ff Define the number of dqs8 delay lines in 

DLL bypass mode. 
DLL_DQS_DELAY_BYPA
SS_7 40:32 0x0 0x0-0x1ff Define the number of dqs7 delay lines in 

DLL bypass mode. 
CONF_CTL_15[31:0]      Offset: 0xf0 

DLL_LOCK 24:16 0x0 0x0-0x1ff
When indicating DLL lock, delay the 
number of delay units required over the 
whole clock cycle. 

DLL_INCREMENT 8:0 0x0 0x0-0x1ff Define the number of additional delay 
units per time when DLL locks. 

CONF_CTL_15[63:32]      Offset: 0xf0 
DQS_OUT_SHIFT_BYPA
SS 56:48 0x0 0x0-0x1ff Define the number of delay units for 

wr_dqs in dqs out bypass mode.  

DLL_START_POINT 40:32 0x0 0x0-0x1ff Define the number of initial delay units 
when DLL locks. 

CONF_CTL_16[31:0]      Offset: 0x100 

INT_ACK 25:16 0x0 0x0-0x3ff Set the bit at "1", this parameter will 
have the bit-related interrupt cleared. 

WR_DQS_SHIFT_BYPAS
S 8:0 0x0 0x0-0x1ff Define the number of delay units in wr 

dqs bypass mode. 
CONF_CTL_16[63:32]      Offset: 0x100 

INT_STATUS 58:48 0x0 0x0-0x7ff Define the interrupt reasons for memory 
controller. 

INT_MASK 42:32 0x0 0x0-0x7ff Define interrupt mask bit for memory 
controllers.  

CONF_CTL_17[31:0]      Offset: 0x110 
EMRS1_DATA 30:16 0x0 0x0-0x7ff Define data stored in the memory 



 
 

module EMRS1 register when controller 
initializes memory modules.  

TREF 13:0 0x0 0x0-0x3ff Define clock interval between two 
memory refresh operations. 

CONF_CTL_17[63:32]      Offset: 0x110 

EMRS2_DATA_1 62:48 0x000
0 0x0-0x7fff

Define EMRS2 data corresponding to 
Chipslect 1 during memory 
initialization. 

EMRS2_DATA_0 46:32 0x000
0 0x0-0x7fff

Define EMRS2 data corresponding to 
Chipslect 0 during memory 
initialization. 

CONF_CTL_18[31:0]      Offset: 0x120 

EMRS2_DATA_3 30:16 0x000
0 0x0-0x7fff

Define EMRS2 data corresponding to 
Chipslect 3 during memory 
initialization. 

EMRS2_DATA_2 14:0 0x000
0 0x0-0x7fff

Define EMRS2 data corresponding to 
Chipslect 2 during memory 
initialization. 

CONF_CTL_18[63:32]      Offset: 0x120 
AXI0_EN_LT_WIDTH_IN
STR 63:48 0x000

0 0x0-0xffff Define if AXI0 port receives a memory 
access of less than 64 bits. 

EMRS3_DATA 46:32 0x000
0 0x0-0x7fffDefine data corresponding to EMRS 3 

during memory initialization. 
CONF_CTL_19[31:0]      Offset: 0x130 

TDLL 31:16 0x000
0 0x0-0xffff Define the number of clock cycles 

required for memory module DLL lock. 

TCPD 15:0 0x000
0 0x0-0xffff Define the number of clock cycles from 

valid clock to precharge. 
CONF_CTL_19[63:32]      Offset: 0x130 

TRAS_MAX 63:48 0x000
0 0x0-0xffff

Define the max number of clock cycles 
for valid row commands in memory 
modules. 

TPDEX 47:32 0x000
0 0x0-0xffff Define the number of clock cycles for 

the command Exit when Power Fails.  
CONF_CTL_20[31:0]      Offset: 0x140 

TXSR 31:16 0x000
0 0x0-0xffff Define the number of clock cycles for 

memory selfrefresh exit. 

TXSNR 15:0 0x000
0 0x0-0xffff Define tXSNR for memory module. 

CONF_CTL_20[63:32]      Offset: 0x140 

XOR_CHECK_BITS 63:48 0x000
0 0x0-0xffff

When fwc is set up, store in the memory 
the value of this parameter xor the check 
bit for next write.  

VERSION 47:32 0x204
1 0x2041 Define memory controller version # 

CONF_CTL_21[31:0]      Offset: 0x150 
ECC_C_ADDR[7:0] 31:24 0x000 0x0- Record address information about 1-bit 
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0 0x1ffffffff ECC errors. 

TINIT 23:0 0x000
0 

0x0-
0xfffff 

Define number of clock cycles required 
for memory module initialization. 

CONF_CTL_21[63:32]      Offset: 0x150 

ECC_C_ADDR[36:8] 60:32 0x0 0x0-
0x1ffffffff

Record addresss informaton about 1-bit 
ECC errors. 

CONF_CTL_22[31:0]      Offset: 0x160 

ECC_U_ADDR[31:0] 31:0 0x0 0x0-
0x1ffffffff

Record addresss informaton about 2-bit 
ECC errors. 

CONF_CTL_22[63:32]      Offset: 0x160 

ECC_U_ADDR[36:32] 36:32 0x0 0x0-
0x1ffffffff

Record addresss informaton about 2-bit 
ECC errors. 

CONF_CTL_23[31:0]      Offset: 0x170 
OUT_OF_RANGE_ADDR[
31:0] 31:0 0x0 0x0-

0x1ffffffff
Record addresss informaton about out-
rang-accesses. 

CONF_CTL_23[63:32]      Offset: 0x170 
OUT_OF_RANGE_ADDR[
36:32] 36:32 0x0 0x0-

0x1ffffffff
Record addresss informaton about out-
rang-accesses. 

CONF_CTL_24[31:0]      Offset: 0x180 
PORT_CMD_ERROR_AD
DR[31:0] 31:0 0x0 0x0-

0x1ffffffff
Record addresss informaton command 
errors on ports. 

CONF_CTL_24[63:32]      Offset: 0x180 
PORT_CMD_ERROR_AD
DR[36:32] 36:32 0x0 0x0-

0x1ffffffff
Record addresss informaton command 
errors on port. 

CONF_CTL_25[31:0]     Offset: 0x190 

ECC_C_DATA[31:0] 31:0 0x0 0x0-
0x1ffffffff

Record data informaton about 1-bit ECC 
errors. 

CONF_CTL_25[63:32]     Offset: 0x190 

ECC_C_DATA[63:32] 63:32 0x0 0x0-
0x1ffffffff

Record data informaton about 1-bit ECC 
errors. 

CONF_CTL_26[31:0]     Offset: 0x1a0 

ECC_U_DATA[31:0] 31:0 0x0 0x0-
0x1ffffffff

Record data informaton about 2-bit ECC 
errors. 

CONF_CTL_26[63:32]     Offset: 0x1a0 

ECC_U_DATA[63:32] 63:32 0x0 0x0-
0x1ffffffff

Record data informaton about 2-bit ECC 
errors. 

 
4.4. Loongson 2F Memory Control Module Design 
Functionally DDR2 SDRAM controller includes a one-to-two AXI interface, a command/data AXI 

interface, a AXI interface to the configuration register, core logic and a I/O Cell.  



 
 

 
 
4.4.1 AXI One-to-Two Module 
The denali ddr2 module includes a command/data AXI interface via which memory read/write 

information is transferred from and to the CPU core and PCI interface and a AXI interface to the 

configuration register which is used for configuration through the CPU core of initialization of the 

memory controller and management of error information and other tasks. For hardware cost 

reduction, a one-to-two AXI module is placed between the AXI crossbar switch and the AXI 

interface to the memory controller, shown in above diagram. For the 2F architecture, this module is 

designed with the following in mind: 

 

（1）Channel Selection. Here Channel 0 is specified as the main path via which nearly all the 

data moves. In order to avoid memory holes in normal operation, a configuration of 

disable_conf_spaces is introduced. If this signal is active, all the transactions will be transferred to 

Channel 0. If not, all the transactions from CPU with length of 1(a?len=0) and a physical address at 

0xfff_fe00~0xfff_ffff will be sent to Channel 1. 

（2）Write Channel Algorithm. Since the AXI write address cycle corresponds to a number of 

data cycles, the transmission direction of a certain transaction must recorded in the module. Here, 

Channel 1 is designed to only accept access from CPU, so it is enough to record the ID from CPU. 

Two 16-bit registers（wc_l0_idmap, wc_l1_idmap）record the transmission direction of all IDs: 

write data will be transmitted in one single direction if (in and only if) they see a record on the 

idmap in the same direction or that the same ID will almost complete its transfer in this direction on 

the present write address channel. 
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IDs are inserted into the two idmaps when the write address channel succeeds in shaking hands, 

while they are deleted when the write response channel succeeds in shaking hands. Deletion 

superior to insertion. An ID can not and should not be inserted into the idmap when its write 

address and the last write data have completed in one single cycle.  

The write of the same IDs is not supported in this module. A write request will be kept from 

transmitting to any downstream channel if the ID of the write address channel is recorded in the 

idmap. (the cache2mem of the L2F ensures the write of the same IDs won’t appear before the 

completion of one write ID, without the need for a mechanism preventing the same IDs)  

（3）Return Channel. Both write response and read return channels transfer data back to the 

master. Because the AXI slave cannot start a transmission by itself and a continuous feedback is 

impossible, a fixed-priority method (Channel 1 is superior to Channel 0) is adopted. Seldom 

accessed, the use of Channel 1 at the control side of the 1-of-2 data selector can reduce the switch 

operations, too. 

 
4.4.2. AXI Interface Module 
The AXI interface includes data and register interfaces. 

The data interface module, which uses the AXI protocol, provides an interface with external 

memory read and write commands. As an AXI slave, this AXI data port accepts access from the 

external AXI master CPU and PCIs. It stores in its FIFO the AXI transaction addresses and the size, 

length and ID of access data, and then translates these requests into internal DDR2 controller 

commands before sending them to the core control of DDR2 controller that will optimize and 

transfer these commands to memory modules. Shown in the block diagram, the AXI interface 

includes 5 separate channels from/to memory: write command, write data, write response, read 

command, and read data. For optimized performance, the read command to the memory controller 

can be requeued and the read data from the AXI data port of memory controller can be disordered 

and interleaved. To keep the return read data on the AXI bus from disordering or interleaving, it is 

possible to transmit read command on the AXI interface using the same ID. Write data interleaving 

is not allowed at the AXI data port. 

The data interface contains 3 FIFOs for command, write and read data. All the FIFOs share the 

same depth of 2.  



 
 

 
According to the AXI protocols, the read and write are separate channels so that it is possible for 

read and write commands to arrive at the same time. Therefore a read/write arbiter is placed before 

the command FIFO. The read/write arbiter algorithm as follows: a) the command that comes in first 

is stored first in the FIFO. The first-come command means that both awvalid and awready are valid 

for write and that both arvalid and arready are valid for read. b) If both read and write are active, 

then read command is received first. The command interface FIFO stores what is described in the 

AXI protocol as follows: i) address (araddr or awaddr) ii) command type (arvalid or awvalid) iii) 

read/write length (awlen or arlen) iv) read/write data width (awasize or arsize) v) 

bufferable/cacheable tag (awcache) vi) command ID (arid or awid). When receiving a write 

command, the AXI data interface returns the response signal to the command initiator using bresp 

and the corresponding valid signal bvalid. Masters have different requirements for response time. 

Some masters want the bus to be released immediately, hoping the memory controller responds 

quickly after receiving the command. Some masters do not want the controller to respond until the 

data is really stored in the memory. These response requirements are provided using awcache. 

When the signal is b0001, the memory controller will transmit a response upon reception of the last 

data of the write request. When awcache is b0000, indicating this is a non-cacheable request, the 

memory controller will not return the response until all the data of the write request are transmitted 

to memory module. When the core logic of memory controller returns read data, the read data FIFO 

stores information as follows: a) read data (rdata); b) read command ID (rid); c) last data tag (rlast); 

d) read data response (rresp) which identifies the return status of the AXI read command transaction. 

The write data FIFO stores the write data from the AXI bus, including the following information: a) 
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data to memory (wdata); b) write command ID (wid); c) data mask (wstrb).  

The AXI interface of configuration registers simply translates an access command from the 1-to-2 

AXI interface into an internal access to configuration registers. A total of 26 64-bit configuration 

registers are included, each containing one or more configuration parameters. For more see Section 

3.     
 
4.4.3. Memory Controller Core Logic 
The Core Control Logic includes Command, Write Data and Read Data Queues, Memory 

Initialization State Machine, Command Queue Management with Command Requeueing, Memory 

Module Command Management Queue, Delay Compensation (DCC) circuit, etc. The Core Logic 

receives and puts the internal translated command from the AXI interface module in the command 

queue of the Core Logic, and places the write data in the write data queue. At the same time it stores 

the read data from memory module in the Read Data Queue and then transfers them to the external 

master through the AXI Interface Module. At the Command Queue Management, the commands in 

the queue are translated into standard memory read/write through a wide range of optimization 

methods, before being transferred to Memory Module Command Management. The Memory 

Initialization State Machine reads initial configuration information in the configuration registers and 

transfers the initialization command to the Memory Module Command Management following the 

standard DDR2 SDRAM initialization process. The Memory Module Command Management 

receives the memory command from the Command Queue Management and Memory Initialization 

State Machine. It also transfers the resulting memory module command to the IO Cell by 

scheduling commands according to memory specific commands, such as refresh, precharge and 

others. At the core of the DDR2 memory controller PHY, the Delay Compensation (DCC) will be 

presented in a separate section. The block diagram below shows the complete core logic of memory 

controller: 
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Each of Write Data and Read Data Queues contains eight 128-bit entries, while the Command 

Queue includes eight entries. It records the address, data size and ID of a memory access from the 

port. When the parameter placement_en is set 0 at the configuration registers, the command queue 

is equivalent to a simple internal queue. Before being sent to the memory controller, the commands 

will be placed in the queue in time order, and will generate and transmit memory commands to the 

Memory Command Management in the order in which they are received. When the parameter 

placement_en is set 1, the Command Queue Management with Command Requeueing will use the 

following methods to optimize the queuing of the commands in the queue in order to increase the 

overall bandwidth of memory controller:  

a) For read and write access to the same chip-select, bank and page (the same row address), 

the memory read/write command will be initiated in the order in which the commands are 

received. This feature could be disabled through the parameter addr_cmp_en only if the 

consistency is ensured in the overall system.  

b) To access the same ID, the memory read/write command will be initiated in the order in 

which the commands are received. The only exception is that a read of different addresses 

can be initiated before a write command even if they share the same ID.  

c) The 2 read commands or a read command plus a write command on the same port in the 

queue can be initiated out of order. Note that the 2 write commands on the same port must 

be sent in the order.   

d) When priority_en is set, the command requeueing logic will get the high-priority 

commands initiated first before these with lower priority regardless of the order in which it 

receives commands. 

e) When two commands access different row addresses on the same bank, the last access 

must close the current page using the precharge command before the next command can 

access a different page, resulting in a lot of overhead. For this reason, the command 

requeueing logic will combine the commands of access to the same pages without conflicts 

of addresses and IDs, thus reducing the cycle of close/open and increasing the overall 

system bandwidth.     

f) Some overhead also occurs when memory switches from read commands into write 

commands. So when the parameter rw_same_en is enabled, the command requeueing logic 

will try to combine read commands that do not have conflicts of addresses and IDs with 

other read commands, and it will try to combine write that do not have conflicts of 

addresses and IDs with other write commands, too. 
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4.4.4. I/O Cell  
The I/O Cell module receives and translates the commands and data from the Memory Command 

Management into DDR2-compatible timing signals. It also controls data transmission of the L2F’s 

DDR2 Pad. A memory controller requires four types of I/O cells for control command, data mask, 

transmission and reception of data and data strobe. 

1）I/O Cell for control command output 

This type of I/O Cell transmits memory control commands including memory address, bank, 

chip-selects, CKE, RAS#, CAS#, and WE#. These one-direction output signals eliminate the 

need for Pad enable signals. And they are transmitted on clock falling edge for maximum 

sample window for memory grains. This type of I/O cell is shown in the block diagram below. 

 
                               

2）I/O Cell for data mask output 

The DDR2 needs to transmit write data and mask simultaneously during one single write 

operation. Each of DDR2 transactions transmits 256-bit data every two clock cycles, with every 

8-bit data corresponding to 1-bit mask. That means 16-bit data are transmitted in one clock 

cycle. Unlike the control signal, the data mask output needs to transmit data twice on one clock 

edge, one on a write clock (clk_wr) rising edge, the other on its falling edge. The data mask 

output I/O Cell is shown in the block diagram below. 

 
                            

3） I/O Cell for data strobe 

A data strobe (DQS) is a bi-directional signal. So it is necessary to generate output enable 



 
 

signals. The input dqs signal is not handled in the I/O cell but is directly transmitted to the 

Delay Compensation Circuit (DCC) of the Core Control Logic Module. This type of I/C Cell is 

showed in the block diagram below: 

 
                             

4） Data I/O Cell 

DDR2 data (DQ) are bi-directional signals. So it is necessary to generate output enable signals. 

The input dq signal is not handled in the I/O cell but is directly transmitted to the Delay 

Compensation Circuit (DCC) of the Core Control Logic Module. This type of I/C Cell is 

showed in the block diagram below: 
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4.4.5. Delay Compensation Circuit (DCC) 
The DCC is part of the core control logic of the memory controller. It is the core of the DDR2 

memory controller PHY module. It plays a crucial role in ensuring that the memory module is 

capable of reliably sampling the control commands and write data from the memory controller and 

that the memory controller is able to sample the read data from the memory module. How to work: 

to start with measuring the number of delay units needed to delay one memory clock cycle; then 

find the number of delay units needed to delay each read/write data strobe (dqs) referring to the 

configuration register parameters (In the bypass mode, the bypass register provides the absolute 

number of the delay units. In the normal mode, the configuration register provides % of delay write 

and read data strobes.); finally, add the delay units to all the signals to be delayed, including 9 read 

data strobes, 1 write data strobe and 1 write data signal. The block diagram below shows the 

complete DDC schematic.    

 

 
A delay line module is included in the DLL Discriminator and each of the Read Data Sample 

Modules (x 9) as well as the clk_wr and wr_dqs generation modules. Each delay line module 

consists of 400 tightly arranged identical delay units. The signal to be delayed is input through the 

module input. A selection signal determines how many units should be delayed. The block diagram 

below shows the complete delay line module as well as the logic of each delay unit. The actual 
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delay of each unit is the sum of the delays of a buffer and a mux.    
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5. Northbridge Module Design 
 

Shown in the diagram below, the NB module of the L2F includes the axi_mux_demux_nb, which, a 

AXI 1-to-2 interface, dispatches CPU requests; the Video accelerator which, a video accelerator, 

includes zoom, yuv2rgb, etc; the PCIX_BRIDGE which, the AXI PCIX bridge, includes the AXI 

Master and Target as well as the PCIX IP；and the nb_aux which, an AXI slave，includes NB 

registers, Local IO, interrupt controllers and the PCIX arbiter and other sub modules. 

 

 

 

5.1. axi_mux_demux_nb Module 
This module transmits a signal from the AX master to either of the downstream ports according to 

rules and returns signals from the Slave to Master. Its path consists of combinational logic, without 

any flip-flops. It contains only two 16-bit registers used for recording the direction in which CPU 

write data is transmitted. 

The Naming Rules: The signals from AX master are prefixed with h_, while 10_ and 11_ are 

prefixed to the AXI signals from downstream Channels 0 and 1, respectively. The write address 

(AW) channel related signals contain wac string; the write data (W) channel, wdc string; the write 

response channel, wrc; the read channel, rac and rdc. 
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Here Channel 0 is specified as the main channel where the majority of data will move through. With 

a phyfisical address of 512M or ranging from 256 to 512M, all the transactions will be transmitted 

to Channel 0 when they hit the PCI header, configuration space, PCI IO and PCI MEM. Since 

prefetch is not allowed in parts of the PCI space, a special care has been dedicated to the module 

read operation, preventing the CPU speculation from changing device status. A memory window 

(mem_win) is defined in the prefetch CPU physical address on the PCI channel. A module read 

request to the PCI will be transferred to Channel 1 if it falls out of the window. The Channel 1 will 

make a default response to the undefined address space (Full zero for read; reject for write.). 

 Write Channel Algorithm 

Since the AXI write address cycle corresponds to a number of data cycles, the transmission 

direction of a certain transaction must recorded in the module. Here, Channel 2 is designed to only 

accept access from CPU, so it is enough to record the ID from CPU. Two 16-bit registers

（wc_l0_idmap, wc_l1_idmap）record the remission direction of all the IDs: write data will be 

transmitted in one single direction iff (in and only if) they see a record on the idmap in the same 

direction or that the same ID will almost complete its transfer in this direction on the present write 

address channel. 

 

IDs are inserted into the two idmaps when the write address channel succeeds in shaking hands, 

while they are deleted when last data transfer has completed on the write data channel. Deletion 

superior to insertion. An ID can not and should not be inserted into a idmap when its write address 

and the last write data has completed in one single cycle.  

 

The write of the same IDs is not supported in this module. A write request will be kept from 

transmitting to any downstream channel if the ID of this write address channel is recorded in the 

idmap. (the cache2mem of the L2F ensures the write of the same IDs won’t appear before the 

completion of one write ID, without the need for a mechanism preventing the same IDs)  

 Return Channel 

Both write response and read return channels transfer data back to the master. Because the AXI 

slave cannot start a transmission by itself and a continuous feedback is impossible, a fixed-priority 

method (Channel 1 is superior to Channel 0) is adopted. Seldom accessed, the use of Channel 1 at 

the control side of the 1-of-2 data selector can reduce the switch operations, too. 

 
5.2. PCIX_BRIDGE Module 
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5.2.1 Description 
The L2F’s PCIX/PCI controller includes two parts: the PCIX/PCI controller, which functions as a 

complete PCIX/PCI state machine for the AXI PCIX/PCI controller; and the interface converter 

from the AXI interface to the controller application interface of the Synopsis’s PCIX/PCI controller, 

which provides data and request flow and buffer control, and converts data/requests from AXI to 

the controller or controller to AXI.  

Our converter module includes two sub modules: AM which provides a channel for the processor 

core to access the PCI bus and the controller’s internal registers through the AXI interface 

(including PCI header and the controller’s internal configuration registers.); and AT which converts 

dma requests and data received by the controller on the PCI bus into the AXI bus requests and data, 

and then feeds back the return data from the AXI bus that are converted at the controller, through 

the PCI bus to the device that sends the dma request. The description of the L2F’s PCI/PCIX 

controller architecture will focus on these sub modudes.   .  

 
5.2.2 AM Submodule 
This module includes a state machine which controls the conversion from the AXI interface to the 

controller  interface, a 8-item table recording the rid of a transmitted request and the seq num 

returned by the controller, a one-cache-row-sized read data buffer which is used for 

buffer/conversion of data formats, and a set of address decoding/translation modules. 

 AM State Machine 

The AM State Machine operates in two states: idle and busy. It receives a request from the AXI 

port in the state idle, and then enters the state busy  where it needs to record translated/decoded 

addresses, pci/pcix commands used by requests, and request types (read/write, whether to enable 

the module operation, keyword priority, access to the controller’s internal registers, and the rid of 

read requests.). In the state busy , if the received request is not an access to the controller’s internal 

registers, the state machine will initiate a request to the Synopsis IP’s AM port. Upon the 

completion of requests/data transmission and shaking-hands operation on the AXI port, the state 

machine switches to the idle state. When it is an access to the controller’s internal registers, the 

state machine will initiate an access to the register port. After completing the access and shaking-

hands on the AXI port, the state machine goes back into the state idle. It does not receive a new 

AXI request in busy state. The read request will be processed first when read/write quests from the 

AXI port arrive at the same time. 

 AM Read Request Table 

The table records the type and rid of the read request as well as the seq num returned from the IP 



 
 

when the IP receives a read request to the PCI bus from the state machine. The rid and read type can 

be found in the table referencing to the seq num when the IP returns read data. 

 Read Data Buffer 

The buffer stores single read (non-module read) and module read data when the AXI interface does 

not receive read data. 

 Address Decoding/Translation 

This module translates the AXI address into the PCI address, and creates commands and type 

information for requests according to the AXI port address related window. 

Now next paragraphs describe different AXI request processes. 

 AXI Read： 

a) The State Machine (SM) receives a read request from the AXI port and enters the state 

busy . 

b) If it is a request to access the internal registers, the SM makes a request to the internal 

register port and waits for its response. Upon receiving the response, the SM releases read 

data and shaking-hands signals on the AXI port. When the shaking-hands process ends at 

the AXI port, the SM goes back into the idle state and the AXI read request has completed. 

If the request is to access the PCI bus, the SM initiates a request to the IP. The Read 

Request Table will record the related contents when the IP responds to the request. Finally 

the SM enters the state idle. 

c) When the IP receives the returned read data on the PCI bus, the related rid and type are 

found in the Read Request Record Table and are fed back with related data on the AXI port. 

If the AXI port fails to complete shaking-hands for receiving data, the read data and 

shaking-hands signals will remain active, with the SM disabled to receive and send 

requests. When the shaking-hands is established and the data is transmitted, this record will 

be deleted from the table. Now, the AXI has completed one cycle of read and transmission. 

If the IP receives a master abort or other error status, the SM will respond with full F and 

complete shaking-hands at the AXI port.  

 AXI Write： 

a) The SM enters the state busy  after receiving a write address request from the AXI port. 

b) If it is a request to access the internal registers, the SM makes a request to the internal 

register port and waits for its response. Upon receiving the response, the SM releases 

shaking-hands signals on the AXI port. When the shaking-hands process ends at the AXI 

port, the SM goes back into the idle state and the AXI write request has completed. If the 
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request is to access the PCI bus, the SM initiates a request to the IP’s AM port, and waits 

for it to read the data on the AXI port. When the data are transmitted, the SM establishes 

shaking-hands for bresp at the AXI port. The SM rejects new requests during the shaking-

hands. When this process ends, the SM goes back into the idle state . Now, this cycle of 

write and transmission ends. If the IP provides error status in the cycle of write and 

transmission, the SM will respond by rejecting the data in this cycle and completing 

shaking-hands at the AXI port. Now this AXI cycle of write and transmission has 

completed. 

 

5.2.3 AT Module 
The AT module includes a 8-entry request queue, a 20x64-bit write data queue, a 24x64-bit read 

data queue, three state machines which initiates a write operation on the AXI bus, transmits read 

data in the PCI and PCIX modes, respectively, a 4-entry seq num queue, a 8-engry rlen queue, and a 

4-entry read data return status queue. 

 Request Queue 

The Request Queue records write and read requests transmitted by the IP at the AT port in the 

PCI/PCIX mode and PCIX respectively. Each of the queue entries contains the 64-bit addr, we 

which indicates write when high (indicates read when low), byte count which indicates the byte 

count in the pcix transmission, processed which indicates the current entry is processed, valid which 

indicates the current entry is valid, and order which indicates the current entry must be executed in a 

given order. 

The maintenance of the queue uses three pointers: wptr which indicates the current write position, 

rptr which current read position, and cptr which indicates the position of the current processed entry. 

If the valid of all the entries has a valid bit, the queue is full.  

 

Before a request from the AT port joins a queue, the addr, we, byte count and order are set to values, 

respectively, with the valid set and the processed cleared. When a state machine reads the request 

from a queue, the processed is set. When the request has completed on the AXI bus, the valid is 

cleared. When a request has a valid value for the order, the state machine cannot read the entry from 

the queue unless all other previous requests have been processed on the AXI bus.  

 Write Data Queue 

Each of the write data queue entries contains 64-bit data and one tag which identifies whether the 

current entry is the last data of one cycle of PCI/PCIX write and transmission.   



 
 

 Read Data Queue 

Each of the read data queue entries contains 64-bit data and two tags which identify whether the 

current entries are the last item of one adb and the last data of one cycle PCIX read and 

transmission, respectively. 

 AXI Bus Write State Machine 

This module initiates a write request on the AXI bus. When it finds a valid and unprocessed write 

request from the read port of the request queue, the SM will start to work to set the current write 

request as processed. When it finds write data from the write data queue, the SM will transmit data 

on the AXI bus. This is a fixed-length write operation with len=1 and size=128 bits. If the start or 

end data of a write request is not aligned with the cache row, the SM fills in the invalid strb. The 

write address is transmitted with the last data of each cycle of write and transmission on the AXI 

bus. The SM will not send new data until the write address is received. It reads the last write data 

from the queue and then clears the valid of the current write request.  

 Read State Machine in PCI Mode 

This state machine initiates a read request on the AXI bus in the PCI mode. When it receives a read 

request from the AT port, the SM will start to work indicating that it will not receive a new request 

until the current request is processed. The SM starts with a read request with len=7 on the AXI bus. 

Then it sends a read request with len=3 when the first AXI read request data is returned. So the SM 

will not issue the next read request until the data of the processed request is returned. This process 

continues until all the data on the PCI bus are transmitted. The SM will reset the read and write 

pointers and counter of the read data queue when the all the data on the PCI bus side are transmitted 

or an error status occurs. If some of read data still do not return from the AXI side at the moment, 

the SM will enter wait state , waiting for the missing data to come back. When the data on the AXI 

come back, the SM operates in the state idle, ready for new read requests.   

 Read State Machine in PCIX Mode 

This state machine initiates a read request on the AXI bus in the PCIX mode. The L2F has up to 

32x64bit data buffer entries on the dma read data channel (24 entries on the AT interface).The 

number of remaining buffer entries on the current dma read data channel will get updated once 

whenever the SM transmits a new read request. The first read request on the AXI bus has len of 7, 

the subsequent requests, len of 3. If the number of remaining buffer entries is greater than or equal 

to its threshold (configured through the Northbridge  configuration registers, the default 

threshold=8), the SM will initiate a new read request on the AXI bus. It goes back into the idle state  

when the last request is transmitted. 
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 Rlen Queue 

The AXI Protocol requires that a single transmission should not cross the range of 4K. In this case, 

the read SM needs to split one request out of range into two. So we use the rlen queue to store the 

len domain of the AXI read request transmitted each time. The len domain of the current return read 

data is used to update the entry which corresponds to the ongoing PCIX read request in the read 

data return status queue. When the last data of one cycle of the AXI read data returns, the entry 

occupied by the previous return data will be released. The PCIX read SM is not allowed to initiate a 

new read request when the rlen queue is full. 

 

 Read Data Return Status Queue 

Each entry of this queue records the states of a PCIX read request which is enqueued but has not 

received the last data from the AXI bus. These states include calculating whether the current return 

data is the low level address of the adb boundary, and calculation of the number of the remaining 

data of current request that have not come back yet. The read SM will, according to the number of 

remaining unreturned data calculate whether the current return data is the last data of one cycle of 

PCIX read and transmission. Because what is initiated is only the read request aligned with the 

cache address, each entry of this queue still contains the domain which records whether the current 

return data should be rejected.  

 

 seq num Queue 

The AT port initiates a read request with a seq num. The returned data needs to provide the seq num 

of the corresponding request at AT port. When a read request at the AT port enqueues, the seq num 

queue records the seq num corresponding to the request. The 4-entry seq num queue means that up 

to 4 read requests can be processed simultaneously. The AT module will not receive any new read 

requests when the seq num queue is full. 

The next paragraph will describe different PCI/PCIX request processes. 

 

 PCI/PCIX Write 

The AT module can receive a write request when the request queue has empty entries and the write 

data queue is ready (the write data queue has empty entries in the PCI mode; it contains empty 

entries at least that hold one adb in the PCIX). The received write request first enqueues to the 

request queue, while its corresponding data joins the write data queue. Once seeing this request at 

the queue read port, the write SM will initiate and maintain a write request with len=1 on the AXI 



 
 

bus until the last data of this write request is transmitted on the AXI bus. Because it is a fixed-length 

AXI write request, the write SM may insert invalid strb between the first AXI write request and the 

last AXI write transmission. 

 PCI Read  

Only one PCI read request is processed in the AT module. That means it does not receive a new 

read request when a previous request is being processed. The PCI read state machine operates in 

several states: idle which indicates the SM is free or idle, rfirst which indicates the SM is sending 

the first read request, rlast indicating the SM is waiting for the last read data to come back, rdata, 

next indicating the SM is sending a read request, and rhold indicating the SM is holding the last 

read request. During a PCI operation, because the SM cannot predict when the transmission of the 

last data cycle ends, a signal “flush” is generated at the end of the PCI bus operation, rejecting the 

unreturned data and those in the read data queue.  

1) If AT receives a new read request, idle－>rfirst ； 

2) If the current request is in the range of 4K, rfirst－>rlast； 

If not, rfirst—>rdata； 

3) When last AXI read data returns, if SM is in rlast or receives the signal flush, it goes back 

to idle state; if not, it enters rnext. 

4) If SM receives flush in rnext, it enters the state rhold, holding the unfinished AXI request 

signal; if not, it goes into rdata after a request transmission. 

 PCIX Read 

The AT module can receive up to 4 PCIX read requests. The PCIX read state machine only 

transmits a read request. The AXI return data is maintained by the read data return status queue. 

The PCIX read SM has three states: idle which indicates the SM is free or idle, rfirst which 

indicates the SM is sending the first read request, and tran which indicates the SM is transmitting 

the remaining requests. The AXI Protocol requires that a single transmission should not cross the 

range of 4K. In this case, the read SM needs to split one request out of range into two.  

In order to improve the efficiency on the ddr side, the first request within the range of 4K is 

assigned len=7, the subsequent requests within the same range are set to len=3. When recognizing 

the read request from the request queue, the SM will first calculate how many cache rows of data 

are fetched in total according to the address of the read request and byte count and then enter the 

state first. The SM switches to the idle state when the first AXI read request is finished. Aligned 

with the cache row, our proposed operation fetches more data than required (less than one cache 

row). Once the PCIX read data is transmitted on the PCI bus, the SM will have to eliminate the 
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remaining data of this cycle in the read data queue.  

 

5.3. nb_aux Module 

This module converts an AXI signal into an internal bus signal(WishBone) at the module mips_ctrl, 

and uses the address decoded at the AdrDecode to read and write the slave modules including 

Northbridge  configuration registers and LocalIO. 

 

5.3.1. mips_ctrl Module 
This module is an AXI-to-WISHBONE interface converter. It performs conversion of a request 

from the 128-bit AXI interface to the 64-bit WISHBONE interface. The WISHBONE is an easy bus 

for interconnecting internal modules, much simpler than the AXI bus. In the L2F’s I/O modules, the 

WISHONE connects the Northbridge ’s former Local IO and internal control register module. 

Because these are low-speed modules which have lower demand for performance, we designed the 

AXI-to-WISHBONE interface converter module with in mind higher conversion efficiency with 

lower resource consumption. For this reason, this module only processes one AXI request at a time 

and does not receive a new request until the current AXI request is finished (The transmission of all 

the signals and the shaking-hands of the AXI bus signals have completed.). The read request is first 

accepted when the AXI read and write requests arrive at the same time. 

 

5.3.2. AdrDecode Module 
This module outputs a set of hit signals according to an access address, using four signals: cpu_rom, 

cpu_localio, cpu_boot, cpu_nb_config. The address space assignment is shown the table below: 

Address Space Size Location 

0x00000000~0x07ffffff 128M LocalIO – IO 

0x08000000~0x0fffffff 128M LocalIO – ROM 

0x10000000~0x13ffffff 64M PCIX_BRIDGE PCI lo0 

0x14000000~0x17ffffff 64M PCIX_BRIDGE PCI lo1 

0x18000000~0x1bffffff 64M PCIX_BRIDGE PCI lo2 

0x1c000000~0x1dffffff 32M LocalIO – ROM 

0x1e000000~0x1fbfffff 28M LocalIO – IO 

0x1fc00000~0x1fcfffff 1M LocalIO – ROM 

0x1fe00000~0x1fe000ff 256B PCIX_BRIDGE PCI Header 



 
 

0x1fe00100~0x1fe001ff 256B Nbcfg 

0x1fe80000~0x1fefffff 512K PCIX_BRIDGE PCI config space 

0x1ff00000~0x1fffffff 1M LocalIO – IO 

Else N/A PCIX_BRIDGE PCI memory space

 

5.3.3. Register Module 
The Northbridge configuration registers  

The NB configuration registers include internal module configuration, GPIO, interrupt status and 

CPU configuration and sampling. Those who perform the same functions as the registers of Bonito 

share the same addresses, minimizing software modifications.  

All the registers are 32 bits, and their names are suffixed with_r. Their output uses their names with 

the suffix –r removed. The registers’ unwritable bit should not be connected to the output, thus 

simplifying the code. The flip-flop with output floated are removed using a comprehensive tool.  

Both read and write operations are performed in two cycles: the address-matched register output is 

transferred to the output register in the first cycle; read or write operation is performed in the second 

cycle. It is a write operation, a new value is generated by operation of the output register’s value 

and the value to write together with the write byte enable. The new value is written in the second 

cycle.  

The external signal is sampled at each beat.   

 
Address  Register Description  

00 poncfg Power on  
04 gencfg General  
08 liocfg LocalIO  
0C reserved  
10 pcimap PCI mapping 
14 pcix_bridge_cfg PCI/X bridge 
18 pcimap_cfg PCI read/write device address 
1C gpio_data GPIO data 
20 gpio_en GPIO direction 
24 intedge interrupt pulse trigger 
28 reserved  
2C intpol interrupt valid level 
30 intenset interrupt enable set 
34 intenclr interrupt enable clear 
38 inten interrupt enable 
3C intisr interrupt request vectors 

40 mem_win_base_l memory window base address low 
32 bits 
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44 mem_win_base_h memory window base address high 
32 bits 

48 mem_win_mask_l memory window mask low 32 bits 
4C mem_win_mask_h memory window mask high 32 bits 
50 pci_hit0_sel_l PCI window 0 control low 32 bits 
54 pci_hit0_sel_h PCI window 0 control high 32 bits 
58 pci_hit1_sel_l PCI window 1 control low 32 bits 
5C pci_hit1_sel_h PCI window 1 control high 32 bits 
60 pci_hit2_sel_l PCI window 2 control low 32 bits 
64 pci_hit2_sel_h PCI window 2 control high 32 bits 
68 pxarb_config PCIX arbiter configuration 
6C pxarb_status PCIX arbiter status 
70 reserved  
74 reserved  
8 reserved  

7C reserved  
80 chip_config0 Chip configuration 
84 chip_config1 Chip configuration 
88 chip_config2 Chip configuration 
8C chip_config3 Chip configuration 
90 chip_sample0  
94 chip_sample1  
98 chip_sample2  
9C chip_sample3  
A0 ov_ctrl Video accelerator control register 
A4 ov_ori_size Original image size 
A8 ov_zoom_size Zoom image size 

AC ov_fb_base frame buffer base address of the 
current image on screen 

B0 ov_fb_stride frame buffer width (stride) for the 
current image on screen 

B4 ov_hor_zoom1 Horizontal zoom control 1 
B8 ov_hor_zoom2 Horizontal zoom control 2 
BC ov_ver_zoom Vertical zoom control 

C0 ov_x_pos X coordinate of the current image 
position on screen 

C4 ov_x_width Screen width 
C8 ov_fb_base frame buffer base address 
CC ov_fb_mask frame buffer range mask 

 

These tables below provide register specifications. 

 

 

Bit-field Field Name Acces
s 

Reset 
Value Description 

CR00: poncfg 



 
 

15:0 pcix_bus_dev Read 
Only lio_ad[7:0] Bus and device # required for CPU 

fetch in the PCIX Agent mode. 

15:8 reserved Read 
Only 

lio_ad[15:8
]  

23:16 pon_pci_configi Read 
Only pci_configi pci_configi value 

31:24 reserved Read 
Only   

CR04: gencfg 

0 ov_en Read/
Write 0 video accelerator enable 

31:1 reserved Read 
Only 0  

CR08: liocfg 

1:0 reserved Read 
Only 0  

6:2 rom_wait Read/
Write 5'b11111 Rom data read delay (cycle) 

7 rom_width Read/
Write 

pci_config[
0] Rom data width 

12:8 io_wait Read/
Write 5'b11111 iO data read delay（cycle） 

13 io_width Read/
Write 1'b0 io data width 

14 iopf_en Read/
Write 1'b0 Io device prefetch enable 

31:15 reserved Read 
Only 0  

CR10: pcimap 

5:0 trans_lo0 Read/
Write 0 pci_lo0 window mapping address 

high 6 bits 

11:6 trans_lo1 Read/
Write 0 pci_lo1 window mapping address 

high 6 bits 

17:12 trans_lo2 Read/
Write 0 pci_lo2 window mapping address 

high 6 bits 

31:18 reserved Read 
Only 0  

CR14: pcix_bridge_cfg 

5:0 pcix_rgate Read/
Write 6'h18 Readout threshold to ddr in the 

PCIX mode 

6 pcix_ro_en Read/
Write 0 Does PCIX bridge allow write to 

overtake read? 

31:18 reserved Read 
Only 0  

CR18: pcimap_cfg 

15:0 dev_addr Read/
Write 0 AD bus is high 16 bits during PCI 

read/write configuration 
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16 conf_type Read/
Write 0 Configures read/write type 

31:17 reserved Read 
Only 0  

CR1C: gpio_data 

3:0 gpio_out Read/
Write 0 GPIO output data 

15:4 reserved Read 
Only 0  

19:16 gpio_in Read/
Write 0 GPIO input data 

31:20 reserved Read 
Only 0  

CR20: gpio_en 

3:0 gpio_en Read/
Write F input at high; output at low 

31:4 reserved Read 
Only 0  

CR50,54/58,5C/60,64: pci_hit*_sel 

0 reserved Read 
Only 0  

2:1 pci_img_size Read/
Write 2'b11 00: 32 bit；10: 64 bit；others: 

invalid 

3 pref_en Read/
Write 0 Prefetch enable 

11:4 reserved Read 
Only 0  

62:12 bar_mask Read/
Write 0 Window size mask 

63 burst_cap Read/
Write 1 Enable burst transfer? 

CR68: pxarb_config 

0 device_en Read/
Write 1 Enable external devices  

1 disable_broken Read/
Write 0 Disable broken master devices 

2 default_mas_en Read/
Write 1 Park bus to default master device. 

5:3 default_master Read/
Write 0 Park a bus to the default device # 

7:6 park_delay Read/
Write 0 

Delay from the time when no 
device requests for the bus to the 
time when the bus is parked to a 
default device. 
00: 0 cycle 
01: 8 cycle 
10: 32 cycle 
11: 128 cycle 



 
 

15:8 level Read/
Write 8'h01 Devices at Level 1 

23:16 rude_dev Read/
Write 0 Support for some specific devices 

31:13 reserved Read 
Only 0  

CR6C: pxarb_status 

7:0 broken_master Read 
Only 0 

Broken master devices (cleared to 
zero when the disable strategy is 
changed) 

10:8 last_master Read 
Only 0 Master device that uses the bus last 

31:11 reserved Read 
Only 0  

CR80: core_config 

2:0 freq_scale Read/
Write 3'b111 Software-controlled frequency 

scaling 

3 disable_scache Read/
Write 0 Disable L2 Cache 

4 imp_first Read/
Write 1 Keyword priority 

7:5 reserved Read/
Write 0  

8 disable_ddr_con
f 

Read/
Write 0 Disable DDR2 configuration port 

9 ddr_buffer_cpu Read/
Write 1 

Allow the data not to enter the 
memory when the write operation 
has completed? 

10 ddr_buffer_pci Read/
Write 1 

Allow the data not to enter the 
memory when the write operation 
has completed? 

31:11 reserved Read 
Only 0  

 

5.3.4. Interrupt Module 
This module sets the interrupt line polarity, enables and transfers interrupt signals. It sets all the 

external interrupts as active and resets them as active low. The INT0-3 has an unchangeable 

interrupt enable bit of 1, which is controlled by the state machine cp0. Other external interrupts 

have their respective enable bit. The pulse mode interrupts (e.g. PCI_SERR) is selected by the 

configuration register intedge. The interrupt handler uses intenclr to clear pulse records.  

The table below provides interrupt line connections: 
Control Register 

Bit field  intpol(acc/def) intedge(acc/def
) inten(acc/def)

Interrupt 
Source 

3 : 0 RW / 0 RW / 0 RW / 0 GPIO 
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7 : 4 RO / 0 RO / 0 RW / 0 PCI_INTn 
8 RO / 1 RO / 0 RW / 0 PCI_PERR
9 RO / 1 RO / 1 RW / 0 PCI_SERR
10 RO / 1 RO / 1 RW / 0 denali 

14 : 11 RW / 0 RW / 0 RESERVED INTn 
31 : 15    reserved 

 

5.3.5. LocalIO Module 
This module connects simple ROM and IO devices. These devices feature separate addresses, data, 

control lines and no shaking-hands. 

The configuration of the module parameter liocfg is described in the table below. The fields 

bus_period and big_mem are retained in the register. The bus_period is not available in the L2F for 

lack of access to power-on configuration. The big_mem is used for output 32 bit address support.  

 

 

 
Bit Field Field Description 

1:0 bus_period 

Available in three values representing the PCI 
speed: 33MHz, 66MHz and 133MHz, keeping the 
value of “wait”the same at different speeds. The 
frequency is detected by software in the L2F. This 
field is retained in the register. 

6:2 rom_wait Rom data read delay (cycle) 

7 rom_width Rom data width（0: 8bit, 1: 16bit） 

12:8 io_wait io data read delay (cycle) 

13 io_width io data width（0: 8bit, 1: 16bit） 

14 iopf_en io prefetch enable 

15 big_mem lio_addr address output control. This value is set to 
zero in the L2F. 

For lower counts of pins, the address and data bus are multiplexed, with high level addresses held 

by the Adlock controlled transparent latch.   
big_mem Address Structure 

0 {ADLock(lio_ad[15:0]), lio_addr[7:0]} 
1 {ADLock({lio_addr[7:0], lio_ad[15:0]}), lio_addr[7:0]} 

The L2F’s LocalIO has a designated capacity of only 32M max. The 24-bit address data bus and 16-

bit data width are enough, so the configuration of big_mem is reserved. (Notes: the undefined low 

256M of the physical address to the Northbridge is cut into two halves so that the ROM and IO hold 



 
 

one half each. ) 

 

5.3.6. Pcix_arbiter Module 
This module operates in the PCIX and PCI modes, implementing a dual round-robin matching 

algorithm, bus parking and broken device isolation. For its configuration and state registers, see 

CR68 and CR6C. 

This module includes a bus monitor, precedence logic and an arbitration state machine. The bus 

monitor outputs the information of the last owner to the precedence logic, which ranks and encodes 

the input requests to create the highest priority request that is decoded to generate the winning 

request in current precedence status, according to which, the arbitration state machine generates the 

signal GNT# at the right time. 

Preventing the master that has gained an access to the bus from delay in initializing an operation, 

the bus monitor includes additional logic that automatically sees the delaying mast as the current 

master device. This delaying device might still be added to the broken device vectors. The isolation 

of broke devices are implemented in the pretreatment process where a request signal must be 

handled to enter the precedence logic.  

For PCI devices using the signal hold like 82371, the active hold will prevent the arbitration state 

machine from switching to the GNT state.  

Note: the PCIX requires the arbiter: 

a) When the bus is idle, the GNT# must be maintained for 5 cycles; this requirement is 

unnecessary in other cases. 

b) To convert GNT#, an idle cycle has to be inserted. 

c) Fair arbitration algorithm 

d) All the I/O signals are directly connected with registers. 

 

 
5.4 Video Acc Module 
 
5.4.1 Video Accelerator Module Structure 
This function is achieved by implementing image scaling and YUV/RGB format conversion, 

enabling the L2x processor to play mpeg2/mpeg4 movies without video card support for these 

functions. The L2E implements the video accelerator in the FPGA of the Northbridge, while the 

L2F integrates it on the chip, placed between the AXI crossbar switch and PCI controller. This 
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module includes yuvq, zoom, yuv2rg band outbuf, around which the module ov_path is built for 

bypass selection. See the block diagram below. 

 
 Ov_path Module 

The Northbridge video acceleration is archived by inserting the module ov_path into the path from 

AXI write channel to PCIX_BRIDGE. The Northbridge configuration with additional video 

acceleration is shown in the diagram above. 

The write requests that fall in the address range of 0x13f00000 ~ 0x13ffffff will be sent to the video 

module and then enter the yuvq module. The AXI one-to-two logic is the same as other parts 

(except the slight changes in address decoding), while the two -to- one logic is similar to the 

slave_link of the crossbar switch, except that the number of write requests that are allowed to 

exceed is 1 max. A round-robin arbitration scheme is established between two competing channels, 

reducing the priority of the party who just used the bus. It works in the way that the highest priority 

request is transmitted to the PCIX bridge when the bus is free and that the bus will get locked after 

shaking-hands has completed on the address bus. The signals valid and ready on the data channel 

are selected according to the current owner of the bus. The bus will unlock when the transmission 

has completed.  

To avoid unexpected errors, exceptions or failures, the acceleration module can be completely shut 

down by the signal ov_en, making the module ov_path logically equal to a straight through 

connection. Note that it would be disastrous to remove the signal ov_en when the acceleration is 

working.    

 YUVQ module 

The video acceleration module supports YUV 422 and 444. The current data format is selected by 

software-configured registers. When ov_yuvfmt = 1, the current format is YUV 444; if not, YUV 

422. 
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 L2E Address L2F Address Remarks 
Y Add 0x13f0_0000 0x13f0_0000 Size: a row 
U Add 0x13f0_0020 0x13f0_0020 Size: a row 
V Add 0x13f0_0040 0x13f0_0040 Size: a row 
Y1 Add 0x13f0_0040 0x13f0_0060 Valid in 422 format, a row size.  

 

The Yuvq module includes 3 queues (yq/uq/vq) which are built of registers or multi-port RAM to 

store Y/U/V data respectively. It is supported with two 1-byte read ports and one write port whose 

data width ranging from 1 to 16 bytes, depended upon the coming data to write. These queues stores 

data in YUV 422 format, with Queue Y being 128 bytes, Queues U and V being 64 bytes, 

respectively. In YUV 444 mode, the reception logic will merge and compress data in such way that 

adjacent U and V share the value of UV at an even address while removing the value of UV at an 

odd address. When receiving write data, each of the queues is required to receive next category of 

data requests every time the queue reaches a full row. The queue identifies the type of current data 

according to the locally maintained inside addresses instead of outside ones, reducing the risk of 

dead lock due to software neglects, thus increasing the system robustness. In YUV 444 format, the 

module receives data in the Y-U-V order, one cache row for each category, corresponding to the 

one row space starting with the Y/U/V addresses 0x0/0x20/0x40 respectively. 

The YUVQ module’s communications signals with the Zoom module include pointers of head, tail, 

read and write as well as the corresponding YUV data. These modules exchange data in standard 

YUV 444 format. This means the YUVQ module has to convert data from YUV 422 to 444 before 

communicating with the Zoom. They select the V queue’s pointers as their pointers for 

communication because the data V arrives later than the others during operation. Since the pointers 

remain at the same level, whether the queue is full or not, a high level of 8 bits is added to the 

pointers for easy indication of full and empty queues. If the 8-bit head and tail pointers are identical, 

the queue is empty; if they are same at low 7 bits except the higher bit, the queue is full. The YUVQ 

module accepts the two read pointers from the Zoom module to provide data needed by the Zoom. 

Because the data is saved in the YUV 422, the Queue Y indexes using the pointer’s low 7 bits. 

Sharing the same UV value at two adjacent points, the U and V queues index using [6:1] bits.      

 Zoom Module  

This module scales and transfers the raw YUV data from the YUVQ module to the module 

va_outbuf. It also requires each transmitted segment to include the number of dots after zoom-in 

and addresses in the frame buffer for the use of the va_outbuf. 

Main I/O Description: 
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  input zoom_allow; //Allow data transfer? 

  input ov_zoom_en; // Enable zoom? 

  input ov_sync; //reset signal, which, if set up, enables next cycle to enter frame_start. 

  input ov_rgb_24; // rgb output format, which influence fb_offset computing. 

  input ov_rgb_32; // the same as above 

  input[7:0] qtail; // the pointers of acquisition queue in the module yuvq 

  input[23:0] ori_yuv0; // raw YUV data obtained from the YUVQ’s acquisition queue 

according the qread 0  

  input[23:0] ori_yuv1;  // raw YUV data obtained from the YUVQ’s acquisition queue 

according the qread 1 

  input[16:0] ov_stepx; // Horizontal scaling 

  input[16:0] ov_stepy;  // Vertical scaling 

  input[10:0] ov_segment_size; // how many dots are in each segment (64 original dots) 

when zoomed (estimated value)?. 

  input[18:0] ov_size_mul_step; // ov_segment_size multiplying ov_stepx  

  input[10:0] ov_last_segment_size; // how many original dots are in the last segment. 

  input[10:0] ov_ori_win_width; // Original window width 

  input[10:0] ov_ori_win_height; // Original window height 

  input[10:0] ov_zoom_win_width; // Zoomed window width 

  input[10:0] ov_zoom_win_height; //zoomed window height 

  input[12:0] ov_zoom_win_x0; // on-screen X coordinates of the dot in the left top corner 

of an image 

  input[10:0] ov_scr_width; // screen resolution (horizontal lines) 

  input[31:0] ov_win_fb_base; // base address of an image in the frame_buffer 

  input[31:0] ov_fb_stride; // address incrimination between lines on the screen in the frame 

buffer 

   

  output[7:0] qhead; // head pointer to YUVQ 

  output[6:0] qread0; //read pointer to YUVQ 

  output[6:0] qread1; // read pointer to YUVQ 

  output[23:0] zoom_yuv0; // Zoomed data that is transmitted 

  output[23:0] zoom_yuv1; // Zoomed data that is transmitted 

  output zoom_yuv0_valid; // Is the transmitted yuv0 valid? 



 
 

  output zoom_yuv1_valid; // Is the transmitted yuv1 valid? 

  output zoom_yuv0_strb; // Is the dot corresponding to yuv0 on screen? 

  output zoom_yuv1_strb; // Is the dot corresponding to yuv1 on screen? 

  output[10:0] zoom_segment_size; // how many dots are in the current segment if 

zoomed? 

  output zoom_addr_valid; // valid address signal 

  output[31:0] zoom_fb_offset; // current segment address in the frame buffer. 

This module scales raw images based on the stepx and stepy. A zoomed dot has the same yuv value 

as an original dot closest to it. Horizontal scaling is completely performed by hardware. while 

vertical scale-up is implemented by hardware, scale-down is achieved by removing unwanted rows 

through software. 

This module divides data in the original Row 1 into multiple segments each of which typically 

corresponds to original 64 dots except for last segment. When a segment starts, the module 

calculates how many zoomed dots the segment will deliver and the address in the frame buffer, 

according to the zoom rate, while transmitting the signal addr_valid signaling the module va_outbuf 

a new cycle. 

The state machine enters the process status if the difference between qhenad and qtail is greater than 

segment_width (typically 64). In this state, it will continue to deliver all the segment data only if the 

zoom_allow is enabled. After zooming, if the posx_old of the dot original coordinates is greater 

than the end address of the segment, the current segment transmission will complete, and a new 

segment starts in the next beat. For width enlargement, the original segment might need to 

correspond to multiple horizontally parallel segments after zooming. The qhead will not move 

ahead until these zoomed segments are created and delivered. This means one segment has 

completed and the module YUVQ can drop the used data. The state machine will enter the state 

line_start if the last segment of one original row (indicated by the internal signal, 

zoom_last_segment) has completed. It will go into the state frame_start if all the lines of one 

original frame have completed. The state machine will switch to the state frame_start whether by 

synac or by reset.  

 

 Yuv2rgb Module 

This module converts original pixel color format from YUV to RGB. It only performs YUV444 to 

RGB24 conversion, whatever YUV format the original image is. Other YUV format conversion is 

performed by software in combination with the module YUVQ. Other RGB format conversion is 
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done the module outbuf. Two pixels are converted in each beat. The input YUV data is 8 bits each. 

The output RGB data is 8 bits each, too. The conversion uses a fixpoint algorithm described below. 

For operation accuracy, temporary 16-bit and 10-bit results are retained for multiplication and 

addition, respectively. The output RGB is checked for saturation. When the value is higher than 255, 

select 255; when it is lower than 0, select 0.    

  u = YUVdata[UPOS] - 128; 

  v = YUVdata[VPOS] - 128; 

  rdif = v + ((v*103)>>8); 

  invgdif = ((u*88)>>8) + ((v*183)>>8); 

  bdif = u + ((u*198)>>8); 

  r = YUVdata[YPOS] + rdif; 

  g = YUVdata[YPOS] - invgdif; 

  b = YUVdata[YPOS] + bdif; 

 Outbuf Module 

This module acquires and transmits the RGB data of zoomed dots according to the given format via 

the AXI bus. Its input signals include rgb_addr_valid which, the module triggering pulse, indicates 

the current segment_size and fb_offset are valid and the data transmission can start next beat; rgb0; 

rgb1; rgb0_valid; rgb1_valid; rgb0_strb; rgb1_strb; rgb_segment_size; and rgb_fb_offset. The rgb? 

represents 24-bit GRB data, while the rgb?_strb indicates now the dot is on the screen and output is 

needed. The rgb?_valid used to mean the data validity. But now this signal is only used with strb to 

generate byte enable because the module zoom will always remain active except for sync. The 

output interfaces are standard AXI master and rgb_allow. 

This module has two separate parts: input and output. The input state machine will jump to 

read_n_place from idle at addr_valid, unless the last segment transmission has completed the output 

of the AXI address cycle. The segment_size and fb_offset will remain unchanged until the first 

RGB data transmission has completed. So it is possible that the state machine does not acquire 

related data until it decides to jump to rand_n_place. The rgb_allow will not be provided before this.  

The input 24-bit RGB data will, before entering the buffer, be saved in the required format: 

rgb16 = {rgb[23:16+3], rgb[15:8+2], rgb[7:0+3]} 

rgb24 = {rgb[23:16], rgb[15:8], rgb[7:0]} 

rgb32 = {8'b0, rgb[23:16], rgb[15:8], rgb[7:0]} 

The current collecting buffer can receive RGB data whenever it is free. If the current RGB data is 

higher than 128 bits, the section out of range can be stored temporally in the cb_cookie before 



 
 

written in the buffer in the next cycle. When it is the last cycle of RGB data transmission for itself, 

the signal allow will remove the next beat to synchronize with the module zoom. 

The output part sees a new segment coming in with new_xfer_valid, new_xfer_addr, and 

new_xfer_length. It indicates it is ready to receive new segments using ob_accept_xfer. The 

awlength records the total required number of AXI transmission cycles. It will initiate next AXI 

transmission cycle if its value does not equal to -1 after the current transmission has completed.  

 

5.4.2 Video Acceleration Register Description 
This table below provides descriptions to the video acceleration registers each of which has 32 bits 

of capacity except ov_pci_base_mem.  
Address Registers Description 

0x1fe001a0 ov_ctrl Control register for video acceleration 
0x1fe001a4 ov_ori_size Original image size 
0x1fe001a8 ov_zoom_size Zoomed image size 

0x1fe001ac ov_fb_base The base address of current display image 
frame buffer 

0x1fe001b0 ov_fb_stride Horizontal width of current display image 
frame buffer 

0x1fe001b4 ov_hor_zoom1 Horizontal zoom control 1 
0x1fe001b8 ov_hor_zoom2 Horizontal zoom control 2 
0x1fe001bc ov_ver_zoom Vertical zoom 
0x1fe001c0 ov_x_pos X coordinates of a display image 
0x1fe001c4 ov_x_width Horizontal screen width 
0x1fe001c8 ov_fb_base frame buffer base address 
0x1fe001cc ov_fb_mask frame buffer range mask 
0x13f00000 ov_pci_base_mem 32*4 byte display data buffer 

 

Bit field Field Name Acce
ss 

Reset 
Value Description 

ov_ctrl：Control register for video acceleration 
0 reset    
1 Y2R_EN    
2 ZoomEn    

4:3 inFMT   

The image format from mplayer to the 
module 
00: YV12  
01: YUV422   
10: YUV444 

6:5 outFMT   

The image format to display controller 
from this module 
00: RGB16    
01: RGB24  
10: RGB32 
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10:7 resolution   

The current resolution of display 
controller 
0000: 320x200    
0001: 320x350    
0010: 360x400     
0011: 640x200 
0100: 640x350    
0101: 640x480    
0110: 720x350     
0111: 720x400 
1000: 800x600    
1001:1024x768   
1010:1280x1024    
1011:1600x1200 

ov_ori_size： Original Image Size 
10:0 X    
21:11 Y    

ov_zoom_size：Zoom Image Size 
10:0 X    
21:11 Y    

ov_fb_base：The base address of current display image in the frame buffer 

31:0 addr   

The base address of current display 
image in the frame buffer can be 
calculated according to the zoom rate 
and dest_x and dest_y (start position 
of current window)in the software 
driver as well as the base address of 
the video adapter frame buffer. 

ov_fb_stride：Horizontal width of current display image frame buffer 

31:0 stride   Horizontal width of current display 
image frame buffer 

ov_hor_zoom1：Horizontal Zoom Control 1 

10:0 ov_stepx   

Zoom rate, which is the result of 
horizontal original size divided by 
zoomed size and is stored as decimals 
in 5.12 format. 

27:11 ov_seg_size   
The number of dots contained in each 
segment: the number of 32÷ zoom rate 
+1 is rounded down. 

ov_hor_zoom2：Horizontal Zoom Control 2 

10:0 ov_size_mul_ste
p   

Zoom rate x dots in each segment, 
that is, the product of above two 
registers. 

28:11 ov_last_seg_size   

Dots contained in last segment. The 
remainder of the dot counts from -0.5 
to +0.5 divided by 32. Also 5.12 
format. 



 
 

ov_ver_zoom：Vertical Zoom Control 
16:0 ov_stepy   See the definition of ov_stepx. 

ov_x_pos： X coordinates of a display image 

12:0 ov_x_pos   X coordinates of a display image is a 
signed number. 

ov_x_width：Horizontal screen width 
10:0 ov_x_width   Horizontal screen width 

ov_fb_base：frame buffer base address 
31:0 ov_fb_base   frame buffer base address 

ov_fb_mask: frame buffer range mask 
31:0 ov_fb_mask   frame buffer range mask  

ov_pci_base_mem：Display data buffer 

32 bytes ov_pci_base_me
m   

Data that writes 64 dots each time: 
First 32 bytes: data y of first 32 dots; 
Second 32 bytes: data u of 64 dots; 
Third 32 bytes: data V of 64 dots; 
Fourth 32 bytes: data y of last 32 dots; 
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6. Reset and Clock Domain 
The L2F integrates commercial DDR2 and PCIX IPs, and provides support for dynamic frequency 

conversion, so the L2F has a more complex clock design than L2E, as are the L2F’s interrupt and 

reset designs. 

 

6.1 Clock Domain 
The L2F features 4 external input clocks: SYSCLK which generates a processor internal clock, 

coreclock by doubling frequency through a PLL; MEMCLK which generates a DD2 clock, 

memclock, by doubling frequency through a PLL; PCICLK which directly adopts input as a main 

clock of the Northbridge; and TESTCLK clock used for test purpose. 

The L2F’s internal main clock domains include coreclock, PCICLOCK and DDR2 memclock. The 

PCICLOCK is provided by the motherboard through the PCICLOCK pin, while the coreclock and 

memclock are generated by separate PLLs using the pin-provided clocks SYSCLK and MEMCLK.  

The PLLs generating coreclock and memclock provide two output channels: PHI which operates in 

the frequency range of 1.6GHz-3.2GHz; and PHI2, the dividing frequency of PHI (division factor 

selectable), which is used by the L2F’s coreclock and memclock. Alternatively, they can directly 

use the clocks provided by pin input clocks SYSCLC and MEMCLK, respectively. The generation 

of coreclock and memclock is controlled by the L2F’s external CLKSEL[9:0] pin. See the table 

below. 

 
PLL clock coreclock 

clksel[2:0] PHI clksel[4:3] PHI2 coreclock
000 SYSCLK*18 00 PHI/2/1 PHI2 
001 SYSCLK*20 01 PHI/2/2 PHI2 
010 SYSCLK*22 10 PHI/2/4 PHI2 
011 SYSCLK*24 11 PHI/2/8 SYSCLK
100 SYSCLK*26    
101 SYSCLK*28    
110 SYSCLK*30    
111 SYSCLK*32    

PLL clock memclock 
clksel[7:5] PHI clksel[9:8] PHI2 coreclock

000 MEMCLK*18 00 PHI/2/1 MEMCLK
001 MEMCLK*20 01 PHI/2/2 PHI2 
010 MEMCLK*22 10 PHI/2/4 PHI2 
011 MEMCLK*24 11 PHI/2/8 PHI2 
100 MEMCLK*26    
101 MEMCLK*28    
110 MEMCLK*30    



 
 

111 MEMCLK*32    
 

Among the three clocks, the roots of corclock and memclock are in the related select output of the 

module clock_control on the mid layer, while the PCICLOCK’s root lies in the chip’s pin input.  

Data exchange takes place between coreclock, memclock and picklock. The clock domain crossing 

signals between them include:  

 The main address and data paths between these domains are established by the 

asynchronous FIFO of the AXI switch module godson2f_arbiter_module. 

 In the godson2f_arbiter_module‘s confreg submodule, 12*64-bit registers are assigned 

values by the coreclock, which are used in the PCICLOCK. Configured by software, the 

register settings are unchangeable.  

 The DDR2 error signal controller_in transfers from DDR2 memclock to the PCICLOCK. 

 Interrupts (external INT and GPIO, PCI_IRQn or the PCI exception, controller_int or the 

DDR2 error signal）are sampled and combined by the PCICLOCK before transferring to 

the coreclock module. A total of 6 levels of interrupt and one NMI signals in the IO 

module transfers from the PCICLOCK to the coreclock. 

 The RESET signal travels from the SYSCLK to the PCICLOCK, coreclock and memclock; 

the softreset goes from the SYSCLK to the coreclock. 

 The chip_sample signal is generated by three Compensation Cells, and sampled by the 

PCICLOCK. 

 The chip_config[] is generated by the PCICLOCK, among which the freq_ctrl

（chip_config[2:0]）transfers from the PCICLOCK to the PLL output domain, the pclock; 

the disable_scache (chip_config[3]) and imp_first (chip_config[4]) to the coreclock; the 

chip_config[9:8] to the memclock, for control of DDR2 register configuration; other 

signals to directly control the PAD. 

 In the modules CLOCK_CTRL and FREQ_SCALE, the RESET for frequency conversion 

control moves from the PCICLOCK to the PLL output domain, the PCLOCK. 

Special attention must be paid to the physical design of the above CCD transmission.  

In addition to the three main domains, the L2F uses the rising edge of a few other clocks to trigger 

flip-flops. They include external input clock SYSCLK, PLL output clocks, etc. all of them are used 

in the modules CLOCK_CTRL or RESET_CTRL on the MID layer.  

The SYSCLK in the RESET_CTRL module generates the reset signal VCOK, COLDRESET, 

HARDRESET, SOFTRESET and others, which will be used by various parts of the L2F one after 
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another. The PLL_CTRL in the CLOCK_CTRL module generates a PLL control clock, whose root 

is input via the processor PIN.  

PCLOCK0 and PCLOCK1, the output clocks of the two PLLs, which are used in the 

FREQ_SCALE and TEST_CLOCK of the CLOCK_CTRL, control dynamic frequency conversion 

and generate a clock for real speed test. They are also transmitted via the CLOCKMODE_ Gate 

Control to an output pin for the PLL test. Their roots are in the PLL output.  

The physical design should try to constrain the above signals to a limited zone. If designed by 

default, the double space is required. No double space must be approved by architecture designers.     

 

6.2 Reset and Interrupt Signals 
The reset signal SYSRESET is input to the L2F processor through its RESET pin, and are sampled 

and counted by the SYSCLK in the module RESET_CTRL on the MID layer, generating VCCOK, 

COLDRESET, HARDRESET and SOFTRESET, whose timing relation and functions as follows:  

 VCCOK continues from SYSRESET for 2**8 beats, for use in controlling the PLL reset. 

 COLDRESET replaces VCCOK and stays for 2**16 beats, to reset the processor core and 

NB. 

 HARDRESET continues from COLDRESET for 2**8 beats, unused now.  

 SOFTRESET lasts for 2**8 beats after HARDRESET, for initialization of BHT Table in 

the Fetch Module. 

Note that the four reset signals follow a timing sequence. Working in combination with the 

processor core clock, the COLDRESET cannot be withdrawn until the PLLs get stable.  

Further more, both COLDRESET and SOFTRESET connect with the negated SYSRESET in the 

test mode, allowing the test bench to control related reset signals. 

The L2F’s interrupt signals include:  

 NMI, externally nonmaskable interrupts； 

 INT[3:0], external interrupts； 

 GPIO[3:0], internal interrupts； 

 PCI_IRQn[A, B, C, D], PCI interrupts； 

 controller_int, DDR2 Controller error interrupts. 

 

Combined and processed by the domain PCICLOCK, these interrupts generate 6 levels of typical 

interrupts and one NMI interrupt for the processor core with the CORECLOCK domain. 



 
 

7. Pin-out and Signal descriptions 
 

 
 
4.1 Processor Pin Assignments 
 

 
 

 
Pin Name 

Pin 
Type Buffer Type PU/PD Function 

001 
DDR2_A0 O 

SSTL_18
（1.8V） No DDR2 Address Bus 

002 
DDR2_A1 O 

SSTL_18
（1.8V） No ' 

003 
DDR2_A2 O 

SSTL_18
（1.8V） No ' 

004 
DDR2_A3 O 

SSTL_18
（1.8V） No ' 

005 
DDR2_A4 O 

SSTL_18
（1.8V） No ' 

006 
DDR2_A5 O 

SSTL_18
（1.8V） No ' 

007 
DDR2_A6 O 

SSTL_18
（1.8V） No ' 

008 
DDR2_A7 O 

SSTL_18
（1.8V） No ' 

009 
DDR2_A8 O 

SSTL_18
（1.8V） No ' 

010 
DDR2_A9 O 

SSTL_18
（1.8V） No ' 

011 
DDR2_A10 O 

SSTL_18
（1.8V） No ' 

012 
DDR2_A11 O 

SSTL_18
（1.8V） No ' 

013 
DDR2_A12 O 

SSTL_18
（1.8V） No ' 

014 
DDR2_A13 O 

SSTL_18
（1.8V） No ' 

015 
DDR2_A14 O 

SSTL_18
（1.8V） No ' 

016 
DDR2_CKp0 O 

SSTL_18
（1.8V） No DDR2 CLK INPUT 

017 
DDR2_CKn0 O 

SSTL_18
（1.8V） No ' 

018 
DDR2_CKp1 O 

SSTL_18
（1.8V） No ' 

批注 [S11]: This table will be 
updated, with additional 
information as ball number, 
max freq, max load, ..etc… 
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019 
DDR2_CKn1 O 

SSTL_18
（1.8V） No ' 

020 
DDR2_CKp2 O 

SSTL_18
（1.8V） No ' 

021 
DDR2_CKn2 O 

SSTL_18
（1.8V） No ' 

022 
DDR2_CKp3 O 

SSTL_18
（1.8V） No ' 

023 
DDR2_CKn3 O 

SSTL_18
（1.8V） No ' 

024 
DDR2_CKp4 O 

SSTL_18
（1.8V） No ' 

025 
DDR2_CKn4 O 

SSTL_18
（1.8V） No ' 

026 
DDR2_CKp5 O 

SSTL_18
（1.8V） No ' 

027 
DDR2_CKn5 O 

SSTL_18
（1.8V） No ' 

028 
DDR2_CKE0 O 

SSTL_18
（1.8V） No DDR2 CLK ENABLE 

029 
DDR2_CKE1 O 

SSTL_18
（1.8V） No ' 

030 
DDR2_CKE2 O 

SSTL_18
（1.8V） No ' 

031 
DDR2_CKE3 O 

SSTL_18
（1.8V） No ' 

032 
DDR2_ODT0 O 

SSTL_18
（1.8V） No DDR2 On Die Termination 

Control 
033 

DDR2_ODT1 O 
SSTL_18
（1.8V） No ' 

034 
DDR2_ODT2 O 

SSTL_18
（1.8V） No ' 

035 
DDR2_ODT3 O 

SSTL_18
（1.8V） No ' 

036 
DDR2_SCSn0 O 

SSTL_18
（1.8V） No DDR2 Chip Select 

037 
DDR2_SCSn1 O 

SSTL_18
（1.8V） No ' 

038 
DDR2_SCSn2 O 

SSTL_18
（1.8V） No ' 

039 
DDR2_SCSn3 O 

SSTL_18
（1.8V） No ' 

040 
DDR2_BA0 O 

SSTL_18
（1.8V） No DDR2 Bank Address Bus 

041 DDR2_BA1 O SSTL_18 No ' 



 
 

（1.8V） 
042 

DDR2_BA2 O 
SSTL_18
（1.8V） No ' 

043 
DDR2_WEn O 

SSTL_18
（1.8V） No DDR2 Write Enable 

044 
DDR2_CASn O 

SSTL_18
（1.8V） No DDR2 Column Address 

Strobe 
045 

DDR2_RASn O 
SSTL_18
（1.8V） No DDR2 Row Address Strobe 

046 
DDR2_DQ0 I/O 

SSTL_18
（1.8V） No DDR2 Data Bus 

047 
DDR2_DQ1 I/O 

SSTL_18
（1.8V） No ' 

048 
DDR2_DQ2 I/O 

SSTL_18
（1.8V） No ' 

049 
DDR2_DQ3 I/O 

SSTL_18
（1.8V） No ' 

050 
DDR2_DQ4 I/O 

SSTL_18
（1.8V） No ' 

051 
DDR2_DQ5 I/O 

SSTL_18
（1.8V） No ' 

052 
DDR2_DQ6 I/O 

SSTL_18
（1.8V） No ' 

053 
DDR2_DQ7 I/O 

SSTL_18
（1.8V） No ' 

054 
DDR2_DQ8 I/O 

SSTL_18
（1.8V） No ' 

055 
DDR2_DQ9 I/O 

SSTL_18
（1.8V） No ' 

056 
DDR2_DQ10 I/O 

SSTL_18
（1.8V） No ' 

057 
DDR2_DQ11 I/O 

SSTL_18
（1.8V） No ' 

058 
DDR2_DQ12 I/O 

SSTL_18
（1.8V） No ' 

059 
DDR2_DQ13 I/O 

SSTL_18
（1.8V） No ' 

060 
DDR2_DQ14 I/O 

SSTL_18
（1.8V） No ' 

061 
DDR2_DQ15 I/O 

SSTL_18
（1.8V） No ' 

062 
DDR2_DQ16 I/O 

SSTL_18
（1.8V） No ' 

063 
DDR2_DQ17 I/O 

SSTL_18
（1.8V） No ' 
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064 
DDR2_DQ18 I/O 

SSTL_18
（1.8V） No ' 

065 
DDR2_DQ19 I/O 

SSTL_18
（1.8V） No ' 

066 
DDR2_DQ20 I/O 

SSTL_18
（1.8V） No ' 

067 
DDR2_DQ21 I/O 

SSTL_18
（1.8V） No ' 

068 
DDR2_DQ22 I/O 

SSTL_18
（1.8V） No ' 

069 
DDR2_DQ23 I/O 

SSTL_18
（1.8V） No ' 

070 
DDR2_DQ24 I/O 

SSTL_18
（1.8V） No ' 

071 
DDR2_DQ25 I/O 

SSTL_18
（1.8V） No ' 

072 
DDR2_DQ26 I/O 

SSTL_18
（1.8V） No ' 

073 
DDR2_DQ27 I/O 

SSTL_18
（1.8V） No ' 

074 
DDR2_DQ28 I/O 

SSTL_18
（1.8V） No ' 

075 
DDR2_DQ29 I/O 

SSTL_18
（1.8V） No ' 

076 
DDR2_DQ30 I/O 

SSTL_18
（1.8V） No ' 

077 
DDR2_DQ31 I/O 

SSTL_18
（1.8V） No ' 

078 
DDR2_DQ32 I/O 

SSTL_18
（1.8V） No ' 

079 
DDR2_DQ33 I/O 

SSTL_18
（1.8V） No ' 

080 
DDR2_DQ34 I/O 

SSTL_18
（1.8V） No ' 

081 
DDR2_DQ35 I/O 

SSTL_18
（1.8V） No ' 

082 
DDR2_DQ36 I/O 

SSTL_18
（1.8V） No ' 

083 
DDR2_DQ37 I/O 

SSTL_18
（1.8V） No ' 

084 
DDR2_DQ38 I/O 

SSTL_18
（1.8V） No ' 

085 
DDR2_DQ39 I/O 

SSTL_18
（1.8V） No ' 

086 DDR2_DQ40 I/O SSTL_18 No ' 



 
 

（1.8V） 
087 

DDR2_DQ41 I/O 
SSTL_18
（1.8V） No ' 

088 
DDR2_DQ42 I/O 

SSTL_18
（1.8V） No ' 

089 
DDR2_DQ43 I/O 

SSTL_18
（1.8V） No ' 

090 
DDR2_DQ44 I/O 

SSTL_18
（1.8V） No ' 

091 
DDR2_DQ45 I/O 

SSTL_18
（1.8V） No ' 

092 
DDR2_DQ46 I/O 

SSTL_18
（1.8V） No ' 

093 
DDR2_DQ47 I/O 

SSTL_18
（1.8V） No ' 

094 
DDR2_DQ48 I/O 

SSTL_18
（1.8V） No ' 

095 
DDR2_DQ49 I/O 

SSTL_18
（1.8V） No ' 

096 
DDR2_DQ50 I/O 

SSTL_18
（1.8V） No ' 

097 
DDR2_DQ51 I/O 

SSTL_18
（1.8V） No ' 

098 
DDR2_DQ52 I/O 

SSTL_18
（1.8V） No ' 

099 
DDR2_DQ53 I/O 

SSTL_18
（1.8V） No ' 

100 
DDR2_DQ54 I/O 

SSTL_18
（1.8V） No ' 

101 
DDR2_DQ55 I/O 

SSTL_18
（1.8V） No ' 

102 
DDR2_DQ56 I/O 

SSTL_18
（1.8V） No ' 

103 
DDR2_DQ57 I/O 

SSTL_18
（1.8V） No ' 

104 
DDR2_DQ58 I/O 

SSTL_18
（1.8V） No ' 

105 
DDR2_DQ59 I/O 

SSTL_18
（1.8V） No ' 

106 
DDR2_DQ60 I/O 

SSTL_18
（1.8V） No ' 

107 
DDR2_DQ61 I/O 

SSTL_18
（1.8V） No ' 

108 
DDR2_DQ62 I/O 

SSTL_18
（1.8V） No ' 
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109 
DDR2_DQ63 I/O 

SSTL_18
（1.8V） No ' 

110 
DDR2_DQS0 I/O 

SSTL_18
（1.8V） No DDR2 Data Strobe Bus 

111 
DDR2_DQS1 I/O 

SSTL_18
（1.8V） No ' 

112 
DDR2_DQS2 I/O 

SSTL_18
（1.8V） No ' 

113 
DDR2_DQS3 I/O 

SSTL_18
（1.8V） No ' 

114 
DDR2_DQS4 I/O 

SSTL_18
（1.8V） No ' 

115 
DDR2_DQS5 I/O 

SSTL_18
（1.8V） No ' 

116 
DDR2_DQS6 I/O 

SSTL_18
（1.8V） No ' 

117 
DDR2_DQS7 I/O 

SSTL_18
（1.8V） No ' 

118 
DDR2_DQS8 I/O 

SSTL_18
（1.8V） No For ECC 

119 
DDR2_DQSn0 I/O 

SSTL_18
（1.8V） No ' 

120 
DDR2_DQSn1 I/O 

SSTL_18
（1.8V） No ' 

121 
DDR2_DQSn2 I/O 

SSTL_18
（1.8V） No ' 

122 
DDR2_DQSn3 I/O 

SSTL_18
（1.8V） No ' 

123 
DDR2_DQSn4 I/O 

SSTL_18
（1.8V） No ' 

124 
DDR2_DQSn5 I/O 

SSTL_18
（1.8V） No ' 

125 
DDR2_DQSn6 I/O 

SSTL_18
（1.8V） No ' 

126 
DDR2_DQSn7 I/O 

SSTL_18
（1.8V） No ' 

127 
DDR2_DQSn8 I/O 

SSTL_18
（1.8V） No For ECC 

128 
DDR2_DQM0 O 

SSTL_18
（1.8V） No DDR2 Data Mask Bus 

129 
DDR2_DQM1 O 

SSTL_18
（1.8V） No ' 

130 
DDR2_DQM2 O 

SSTL_18
（1.8V） No ' 

131 DDR2_DQM3 O SSTL_18 No ' 



 
 

（1.8V） 
132 

DDR2_DQM4 O 
SSTL_18
（1.8V） No ' 

133 
DDR2_DQM5 O 

SSTL_18
（1.8V） No ' 

134 
DDR2_DQM6 O 

SSTL_18
（1.8V） No ' 

135 
DDR2_DQM7 O 

SSTL_18
（1.8V） No ' 

136 
DDR2_DQM8 O 

SSTL_18
（1.8V） No For ECC 

137 
DDR2_CB0 I/O 

SSTL_18
（1.8V） No DDR2 ECC  

138 
DDR2_CB1 I/O 

SSTL_18
（1.8V） No ' 

139 
DDR2_CB2 I/O 

SSTL_18
（1.8V） No ' 

140 
DDR2_CB3 I/O 

SSTL_18
（1.8V） No ' 

141 
DDR2_CB4 I/O 

SSTL_18
（1.8V） No ' 

142 
DDR2_CB5 I/O 

SSTL_18
（1.8V） No ' 

143 
DDR2_CB6 I/O 

SSTL_18
（1.8V） No ' 

144 
DDR2_CB7 I/O 

SSTL_18
（1.8V） No ' 

145 
DDR2_GATEO0 O 

SSTL_18
（1.8V） No DDR2 GATE for DLL 

146 
DDR2_GATEO1 O 

SSTL_18
（1.8V） No DDR2 GATE for DLL 

147 
DDR2_GATEO2 O 

SSTL_18
（1.8V） No DDR2 GATE for DLL 

148 
DDR2_GATEI0 I 

SSTL_18
（1.8V） No ' 

149 
DDR2_GATEI1 I 

SSTL_18
（1.8V） No ' 

150 
DDR2_GATEI2 I 

SSTL_18
（1.8V） No ' 

151 
DDR2_VREF PWR 0.9V No DDR2 VREF, 4 pads 

required 
152 

DDR2_VREF PWR 0.9V No DDR2 VREF, 4 pads 
required 

153 
DDR2_VREF PWR 0.9V No DDR2 VREF, 4 pads 

required 
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154 
DDR2_VREF PWR 0.9V No DDR2 VREF, 4 pads 

required 
155 PCI_AD0 I/O 3.3V PCI No PCI Address and Data Bus 
156 PCI_AD1 I/O 3.3V PCI No ' 
157 PCI_AD2 I/O 3.3V PCI No ' 
158 PCI_AD3 I/O 3.3V PCI No ' 
159 PCI_AD4 I/O 3.3V PCI No ' 
160 PCI_AD5 I/O 3.3V PCI No ' 
161 PCI_AD6 I/O 3.3V PCI No ' 
162 PCI_AD7 I/O 3.3V PCI No ' 
163 PCI_AD8 I/O 3.3V PCI No ' 
164 PCI_AD9 I/O 3.3V PCI No ' 
165 PCI_AD10 I/O 3.3V PCI No ' 
166 PCI_AD11 I/O 3.3V PCI No ' 
167 PCI_AD12 I/O 3.3V PCI No ' 
168 PCI_AD13 I/O 3.3V PCI No ' 
169 PCI_AD14 I/O 3.3V PCI No ' 
170 PCI_AD15 I/O 3.3V PCI No ' 
171 PCI_AD16 I/O 3.3V PCI No ' 
172 PCI_AD17 I/O 3.3V PCI No ' 
173 PCI_AD18 I/O 3.3V PCI No ' 
174 PCI_AD19 I/O 3.3V PCI No ' 
175 PCI_AD20 I/O 3.3V PCI No ' 
176 PCI_AD21 I/O 3.3V PCI No ' 
177 PCI_AD22 I/O 3.3V PCI No ' 
178 PCI_AD23 I/O 3.3V PCI No ' 
179 PCI_AD24 I/O 3.3V PCI No ' 
180 PCI_AD25 I/O 3.3V PCI No ' 
181 PCI_AD26 I/O 3.3V PCI No ' 
182 PCI_AD27 I/O 3.3V PCI No ' 
183 PCI_AD28 I/O 3.3V PCI No ' 
184 PCI_AD29 I/O 3.3V PCI No ' 
185 PCI_AD30 I/O 3.3V PCI No ' 
186 PCI_AD31 I/O 3.3V PCI No ' 
187 PCI_CBEn0 I/O 3.3V PCI No PCI Command/Byte Enable 
188 PCI_CBEn1 I/O 3.3V PCI No ' 
189 PCI_CBEn2 I/O 3.3V PCI No ' 
190 PCI_CBEn3 I/O 3.3V PCI No ' 
191 PCI_IRQnA I 3.3V PCI No PCI Interrupt Request 
192 PCI_IRQnB I 3.3V PCI No ' 
193 PCI_IRQnC I 3.3V PCI No ' 



 
 

194 PCI_IRQnD I 3.3V PCI No ' 
195 PCI_REQn0 I/O 3.3V PCI No PCI Bus Request 
196 PCI_REQn1 I 3.3V PCI No ' 
197 PCI_REQn2 I 3.3V PCI No ' 
198 PCI_REQn3 I 3.3V PCI No ' 
199 PCI_REQn4 I 3.3V PCI No ' 
200 PCI_REQn5 I 3.3V PCI No ' 
201 PCI_REQn6 I 3.3V PCI No ' 
202 PCI_GNTn0 I/O 3.3V PCI No PCI Bus Grant 
203 PCI_GNTn1 O 3.3V PCI No ' 
204 PCI_GNTn2 O 3.3V PCI No ' 
205 PCI_GNTn3 O 3.3V PCI No ' 
206 PCI_GNTn4 O 3.3V PCI No ' 
207 PCI_GNTn5 O 3.3V PCI No ' 
208 PCI_GNTn6 O 3.3V PCI No ' 
209 

PCI_IDSEL I 3.3V PCI No PCI Initialization Device 
Select 

210 PCI_RESETn I/O 3.3V PCI No PCI Reset 
211 PCI_FRAMEn I/O 3.3V PCI No PCI Cycle Frame 
212 PCI_IRDYn I/O 3.3V PCI No PCI Initiator Ready 
213 PCI_TRDYn I/O 3.3V PCI No PCI Target Ready 
214 PCI_DEVSELn I/O 3.3V PCI No PCI Device Select 
215 PCI_STOPn I/O 3.3V PCI No PCI Stop 
216 PCI_PAR I/O 3.3V PCI No PCI Parity  
217 PCI_PERR I/O 3.3V PCI No PCI Data Parity Error 
218 PCI_SERR I/O 3.3V PCI No PCI System Error 
219 PCI_CLK I 3.3V PCI No PCI Clock 
220 PCI_CONFIG0 I 3.3V PCI No PCI Config 
221 PCI_CONFIG1 I 3.3V PCI No PCI Config 
222 PCI_CONFIG2 I 3.3V PCI No PCI Config 
223 PCI_CONFIG3 I 3.3V PCI No PCI Config 
224 PCI_CONFIG4 I 3.3V PCI No PCI Config 
225 PCI_CONFIG5 I 3.3V PCI No PCI Config 
226 PCI_CONFIG6 I 3.3V PCI No PCI Config 
227 PCI_CONFIG7 I 3.3V PCI No PCI Config 
228 

LIO_AD0 I/O 3.3V No Local IO Address and Data 
Bus 

229 LIO_AD1 I/O 3.3V No ' 
230 LIO_AD2 I/O 3.3V No ' 
231 LIO_AD3 I/O 3.3V No ' 
232 LIO_AD4 I/O 3.3V No ' 
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233 LIO_AD5 I/O 3.3V No ' 
234 LIO_AD6 I/O 3.3V No ' 
235 LIO_AD7 I/O 3.3V No ' 
236 LIO_AD8 I/O 3.3V No ' 
237 LIO_AD9 I/O 3.3V No ' 
238 LIO_AD10 I/O 3.3V No ' 
239 LIO_AD11 I/O 3.3V No ' 
240 LIO_AD12 I/O 3.3V No ' 
241 LIO_AD13 I/O 3.3V No ' 
242 LIO_AD14 I/O 3.3V No ' 
243 LIO_AD15 I/O 3.3V No ' 
244 LIO_CSn O 3.3V No LOcal IO Chip Select 
245 LIO_ROMCSn O 3.3V No Local IO Rom chip select 
246 LIO_WRn O 3.3V No Local IO Write Enable 
247 LIO_RDn O 3.3V No Local IO Read Enable 
248 LIO_ADLOCK O 3.3V No Local IO Address Lock 
249 LIO_DIR O 3.3V No Local IO DIR 
250 LIO_DEN O 3.3V No Local IO Device Enable 
251 LIO_A0 O 3.3V No Local IO Address Bus 
252 LIO_A1 O 3.3V No ' 
253 LIO_A2 O 3.3V No ' 
254 LIO_A3 O 3.3V No ' 
255 LIO_A4 O 3.3V No ' 
256 LIO_A5 O 3.3V No ' 
257 LIO_A6 O 3.3V No ' 
258 LIO_A7 O 3.3V No ' 
259 SYSRESET I 3.3V Iddqhold System Reset  
260 SYSCLK I 3.3V No System Clock 
261 MEMCLK I 3.3V No DDR2 Option Clock 
262 GPIO0 I/O 3.3V No GPIO 
263 GPIO1 I/O 3.3V No ' 
264 GPIO2 I/O 3.3V No ' 
265 GPIO3 I/O 3.3V No ' 
266 INTn0 I 3.3V Iddqhold Interrupt  
267 INTn1 I 3.3V Iddqhold ' 
268 INTn2 I 3.3V Iddqhold ' 
269 INTn3 I 3.3V Iddqhold ' 
270 NMIn I 3.3V Iddqhold ' 
271 CLKSEL0 I 3.3V Iddqhold Core Clock Select 
272 CLKSEL1 I 3.3V Iddqhold ' 
273 CLKSEL2 I 3.3V Iddqhold ' 



 
 

274 CLKSEL3 I 3.3V Iddqhold ' 
275 CLKSEL4 I 3.3V Iddqhold ' 
276 CLKSEL5 I 3.3V Iddqhold Memory Clock Select 
277 CLKSEL6 I 3.3V Iddqhold ' 
278 CLKSEL7 I 3.3V Iddqhold ' 
279 CLKSEL8 I 3.3V Iddqhold ' 
280 CLKSEL9 I 3.3V Iddqhold ' 
281 TEST_CTRL0 I 3.3V Pull-up Test Control 
282 TEST_CTRL1 I 3.3V Pull-up Test Control 
283 TEST_CTRL2 I 3.3V Pull-up Test Control 
284 TEST_CTRL3 I 3.3V Pull-up Test Control 
285 TEST_CTRL4 I 3.3V Pull-up Test Control 
286 TEST_CTRL5 I 3.3V Pull-up Test Control 
287 TEST_CTRL6 I 3.3V Pull-up Test Control 
288 TEST_CTRL7 I 3.3V Pull-up Test Control 
289 TESTCLK I 3.3V No Test clock 
290 PLLCLOCK0 O 3.3V No PLL0 clock out for test 
291 PLLCLOCK1 O 3.3V No PLL1 clock out for test 
292 TRST I 3.3V Pull-up JTAG signal 
293 TMS I 3.3V Pull-up JTAG signal 
294 TDI I 3.3V Pull-up JTAG signal 
295 TCK I 3.3V No JTAG signal 
296 TDO O 3.3V No JTAG signal 

Note：Iddqhold menas no pull-up during a leakage test but pull-up in other casese. 
 

 
 
4.2 Alphabetical Signals Reference 
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5. Memory Map 
 

 

批注 [S12]: Need input from 
ICT 



 
 

6. Power ON Sequence (Boot) 
 

 

批注 [S13]: Need inputs from 
ICT 



LOONGSON 2F                                                                                                         

78/82 

7.  Electrical characteristics 
 
 
 

批注 [S14]: To be updated 



 
 

8.  Thermal Specifications and Design considerations 
 
9.1 Desktop 100% CPU utilization 
 

Unit:W BC_1V26_m40C 

1.3GHz 

TC_1V2_25C 

1GHz 

TC_1V26_125C

1GHz 

TC_1V0_25C WC_1V08_125C

600MHz 

WC_0V9_125C 

Dyn. 5.171 3.559 4.6267  2.019  

Leak. 0.9295 0.6313 1.7937  0.8501  

Total 6.104 4.190 6.4204  2.8691  

 
 

批注 [S15]: To be updated. We 
need to decide wich Power 
consumption value to publish 
(for estimated value perhaps it 
is better just to wait silicon 
results for 2F 
 
 
For 2E, we need to have the 
silison measurements 
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9. Package Mechanical Specifications 
 
10.1 Package Mechanical Drawing 
 

 
 
 
 
 
10.2 Heat Sink mechanical Drawing 

批注 [S16]: To be updated by 
david Kaire 
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10. Application Environment 
 
 

 

批注 [S17]: We need to show 
the application board proposal, 
with all external components: 
voltage regulator, decoupling 
capacitance …DDR, ….etc ….
Compensation cell in accurate 
mode … 

批注 [S18]: This is just an 
example , for power core 
supply 


