GS464V: A High-Performance Low-Power XPU with 512-Bit Vector Extension

Weiwu Hu, Yunji Chen Institute of Computing Technology, Chinese Academy of Sciences Loongson Technologies Corporation Limited hww@ict.ac.cn, cyj@ict.ac.cn

Contents

Background
 The XPU architecture of GS464V
 Godson chips based on GS464V

Godson is the academic name of Loongson

TOP10 HPCs in 2008.11

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz , Voltaire Infiniband / 2008 IBM	129600	1105.00	1456.70	2483.47
2	Oak Ridge National Laboratory United States	Jaguar - Cray XT5 QC 2.3 GHz / 2008 Cray Inc.	150152	1059.00	1381.40	6950.60
3	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0/2.66 GHz / 2008 SGI	51200	487.01	608.83	2090.00
4	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
5	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	450.30	557.06	1260.00
6	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38	2000.00
7	NERSC/LBNL United States	Franklin - Cray XT4 QuadCore 2.3 GHz / 2008 Cray Inc.	38642	266.30	355.51	1150.00
8	Oak Ridge National Laboratory United States	Jaguar - Cray XT4 QuadCore 2.1 GHz / 2008 Cray Inc.	30976	205.00	260.20	1580.71
9	NNSA/Sandia National Laboratories United States	Red Storm - Sandia/ Cray Red Storm, XT3/4, 2.4/2.2 GHz dual/quad core / 2008 Cray Inc.	38208	204.20	284.00	2506.00
10	Shanghai Supercomputer Center China	Dawning 5000A - Dawning 5000A, QC Opteron 1.9 Ghz, Infiniband, Windows HPC 2008 / 2008 Dawning	30720	180.60	233.47	>

3

Top10 HPCs in 2009.11

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
2	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122400	1042.00	1375.78	2345.50
3	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	98928	831.70	1028.85	
4	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
5	National SuperComputer Center in Tianjin/NUDT China	Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 NUDT	71680	563.10	1206.19	>
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX, Xeon QC 3.0 GHz/Nehalem EP 2.93 Ghz / 2009 SGI	56320	544.30	673.26	2348.00
7	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
8	Argonne National Laboratory United States	Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00
9	Texas Advanced Computing Center/Univ. of Texas United States	Ranger - SunBlade x6420, Opteron QC 2.3 Ghz, Infiniband / 2008 Sun Microsystems	62976	433.20	579.38	2000.00
10	Sandia National Laboratories / National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband / 2009 Sun Microsystems	41616	423.90	487.74	

Top10 HPCs in 2010.6

Rank	Site	Computer/Year Vendor	Cores	R _{max}	R _{peak}	Power
1	Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	224162	1759.00	2331.00	6950.60
2	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU / 2010 Dawning	120640	1271.00	2984.30	>
3	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband / 2009 IBM	122400	1042.00	1375.78	2345.50
4	National Institute for Computational Sciences/University of Tennessee United States	Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz / 2009 Cray Inc.	98928	831.70	1028.85	
5	Forschungszentrum Juelich (FZJ) Germany	JUGENE - Blue Gene/P Solution / 2009 IBM	294912	825.50	1002.70	2268.00
6	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon Westmere 2.93 Ghz, Infiniband / 2010 SGI	81920	772.70	973.29	3096.00
7	National SuperComputer Center in Tianjin/NUDT China	Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband / 2009 NUDT	71680	563.10	1206.19	
8	DOE/NNSA/LLNL United States	BlueGene/L - eServer Blue Gene Solution / 2007 IBM	212992	478.20	596.38	2329.60
9	Argonne National Laboratory United States	Intrepid - Blue Gene/P Solution / 2007 IBM	163840	458.61	557.06	1260.00
10	Sandia National Laboratories / National Renewable Energy Laboratory United States	Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband / 2010 Sun Microsystems	42440	433.50	497.40	

5

What Next?

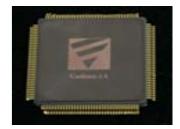
No. 1 ?

Build HPCs with domestic designed CPU !

CPU Plan of China

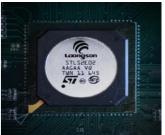
Design CPU for HPC is part of the National S&T Major Project for CPU

- the National Mid-Term S&T Plan from 2006-2020
- 16 Major Projects, each fund USD 5-10B from 2006-2020
 - CPU and OS
 - VLSI process technology
 - Next-generation (4G) wireless network
 - High-end digital machine tool
 - Advanced nuclear fission power plant
 - Water pollution control and treatment
 - Large aircraft
 - High-resolution earth-observation system
 - Manned space flight and lunar exploration

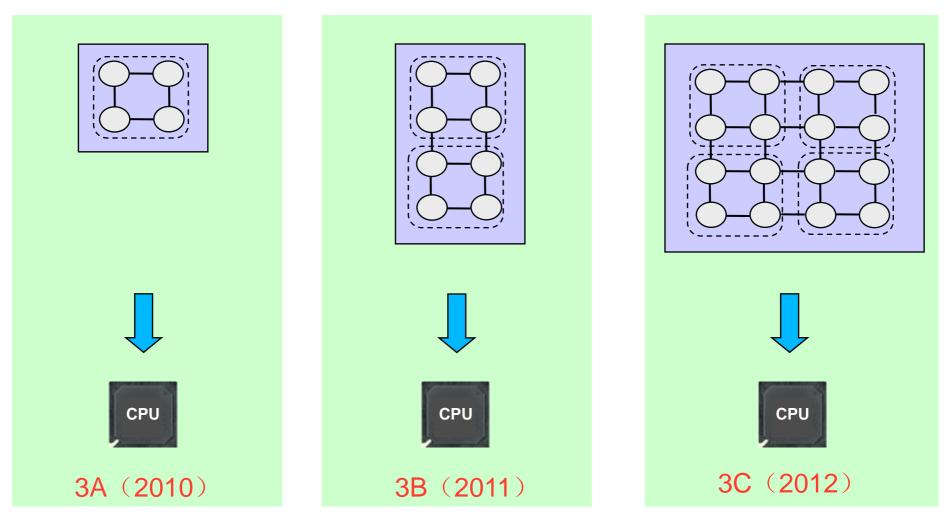

CPU Development Plan

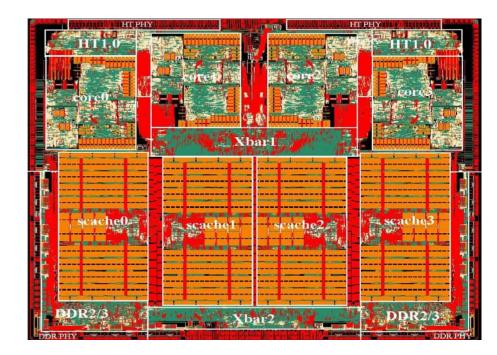
- 10th Five Year Plan (2001-2005):
 - Startup and key technology research
 - Four-Issue OOO Architecture, 1.0GHz
- 11th Five Year Plan (2006-2010):
 - From emulation to innovation, low- to high-end, research to product
 - Multi-core CPU with leading performance, CPU company setup
 - Desktop, servers, and HPC products based on domestic designed CPU
- 12th and 13th Five Year Plan (2011-2020):
 - Build a new ecosystem to support the IT industry in China
 - Start from National Security, education, e-government,

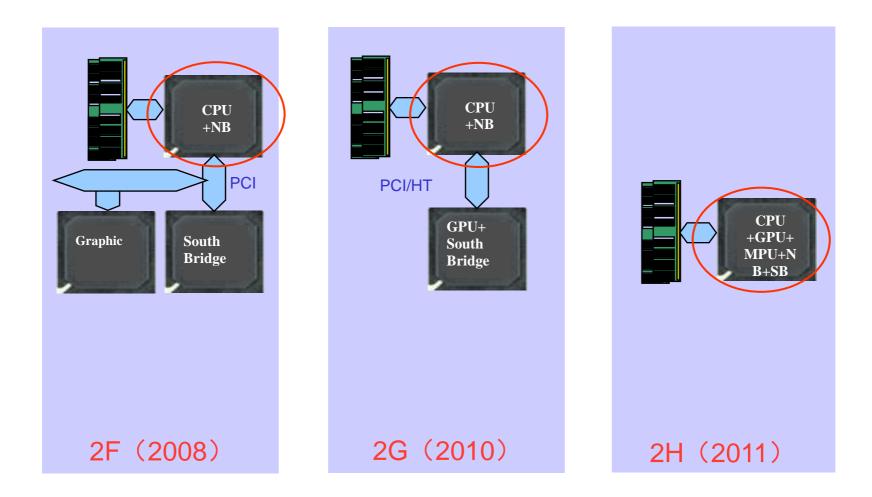
Godson CPU Briefs


Research Stage: started in 2001.

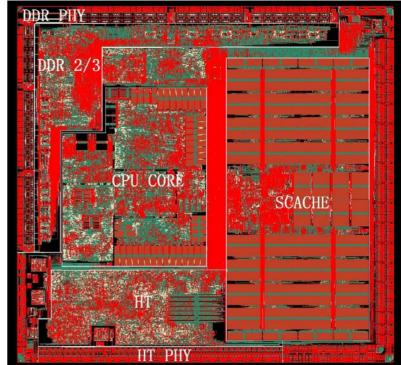
- ◆The 32-bit Godson-1 in 2002 is the first CPU in China
- **♦**The 64-bit Godson-2B in 2003.10
- ♦ The 64-bit Godson-2C in 2004.12
- **The 64-bit Godson-2E in 2006.03**
- **◆**Each Triple the performance of its previous one
- **SPEC int2000 and SPEC fp2000 of Godson-2E> 500**
- Product Stage: started in 2008
 - **♦**Low end: SOCs for low-cost PC and consumer electronics
 - High end: multi-core CPUs for server and HPCs



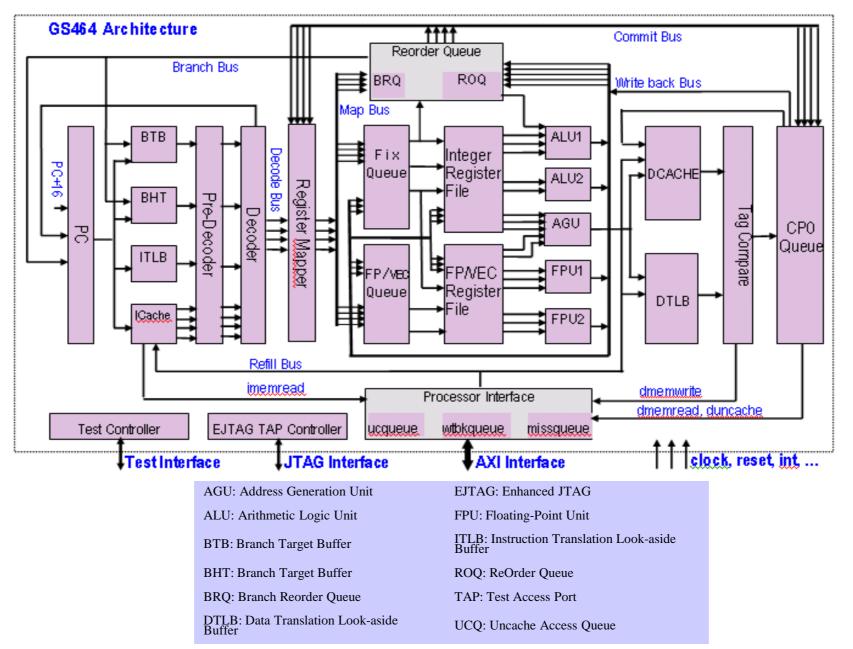

High end Roadmap: More cores on a chip


Godson-3A

- 1.0GHz@65nm CMOS, 10W
- 425M transistors, area 174.5mm²
- Four GS464 cores
 - **♦ 64-bit MIPS64 Compatible**
 - ♦ HW support for X86 binary translation
 - ♦ Four-issue, OOO
 - ♦ 64KB+64KB L1 (four-way)
- **4MB L2**
- Two on-chip DDR2/3 controller.
- Two 16-bit HT
- PCI/PCIX, LPC, GPIO, etc.
- SPEC int2000 rate and SPEC fp2000 rate 25
- **The architecture presented in HOTCHIPS2008**


Low end Roadmap: From CPU to SOC

- 1.0GHz@65nm CMOS, 3W
- 100M transistors, area 60mm²
- Single GS464 cores
 - **♦64-bit MIPS64 Compatible**
 - **HW** support X86 binary translation
 - **♦**Four-issue, OOO
 - **♦64KB+64KB L1 (four-way)**
- 1MB L2
- On-chip DDR2/3 controller.
- 16-bit HT
- PCI/PCIX, LPC, GPIO, etc.

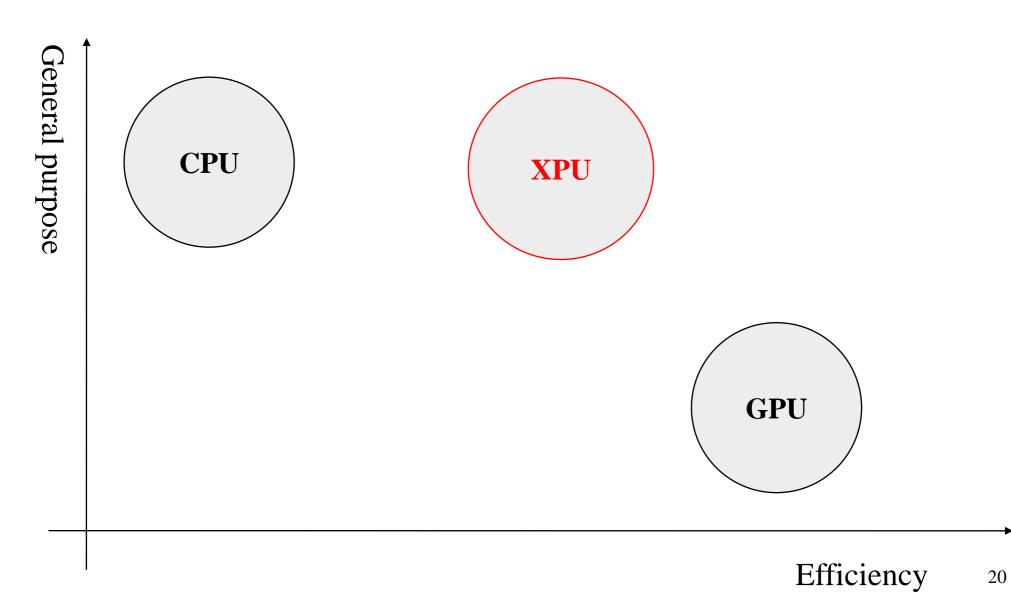


GS464: A "typical" 4-issue 64-bit CPU Core

- MIPS64 compatible, 200+ instructions for X86 emulation
- **Four-issue 64-bit superscalar OOO pipeline**
- Two fix, two FP, one memory units
- 64KB icache and 64KB dcache, 4-way
- 64-entry TLB, 16-entry ITLB
- Directory-based cache-coherence
- Parity check for icache, ECC for dcache
- **EJTAG for debugging**
- Adopted by Godson-2G and Godson-3A

GS464 Architecture

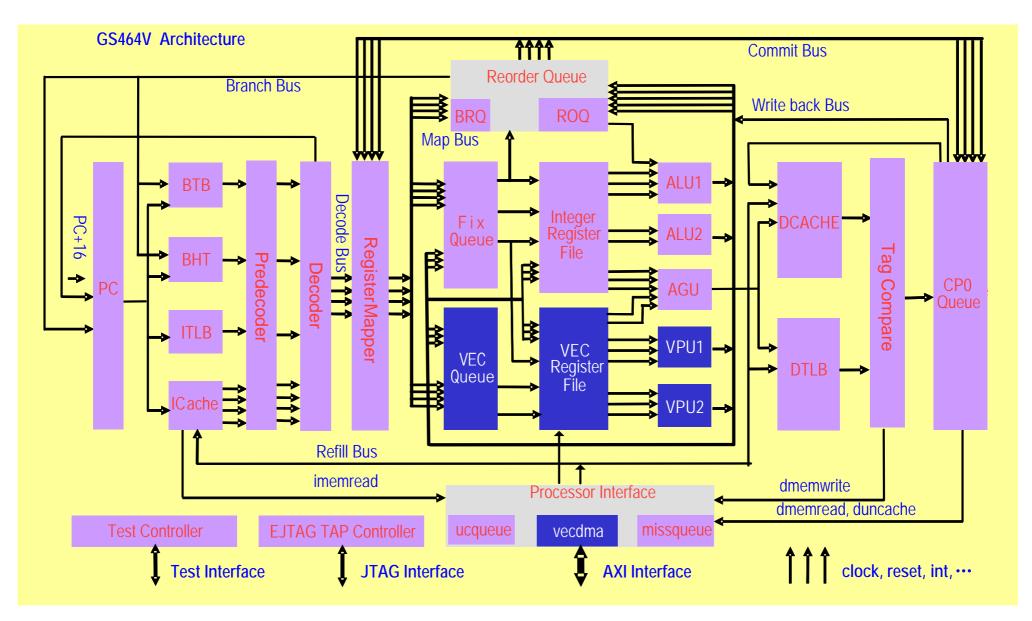
Contents


Background
 The XPU architecture of GS464V
 Godson chips based on GS464V

XPU Idea

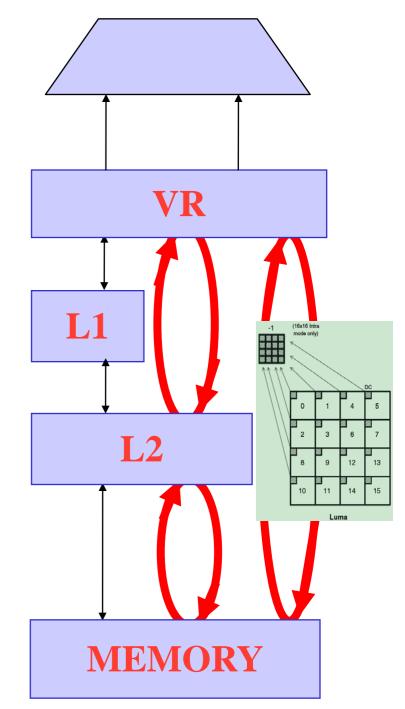
Obstacles of Moore's Law

- Memory Wall: memory hierarchy
- **♦**Power consumption Wall: multi-core architecture
- **♦**Bandwidth Wall: XPU architecture
- Why XPU?
 - **◆**CPU: separate data and computation, flexible & low efficiency
 - ♦ GPU: tightly coupled data and computation: not flexible & high efficiency
- XPU: Reconfigurable data for computation, flexible & high efficiency
 XPU=CPU+DSP+MPU+...

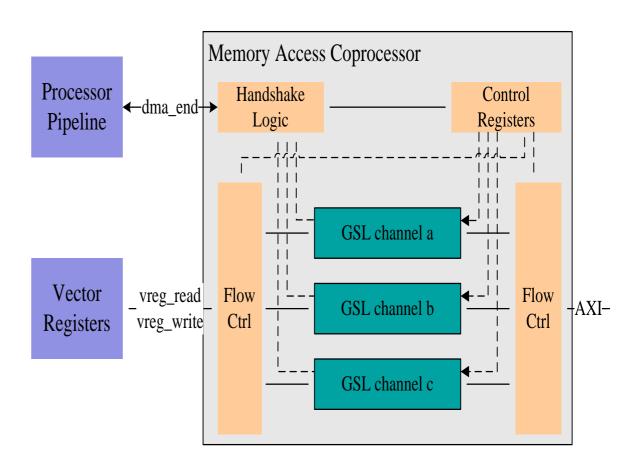

XPU Idea

GS464V Architecture Features

- Keeps all GS464 features, and extended by:
- Extend each 64-bit FP unit to 256-bit SIMD vector unit
 - **Two vector units (dual issue 256-bit SIMD)**
 - **◆**Each core has eight 64-bit MACs
 - **♦ Keep MIPS64 compatible**
- 128-entry 256-bit register file
- 300+ SIMD instructions (Linpack, FFT, filter, media.....)
- The XPU architecture
- Adopted by Godson-2H/Godson-3B

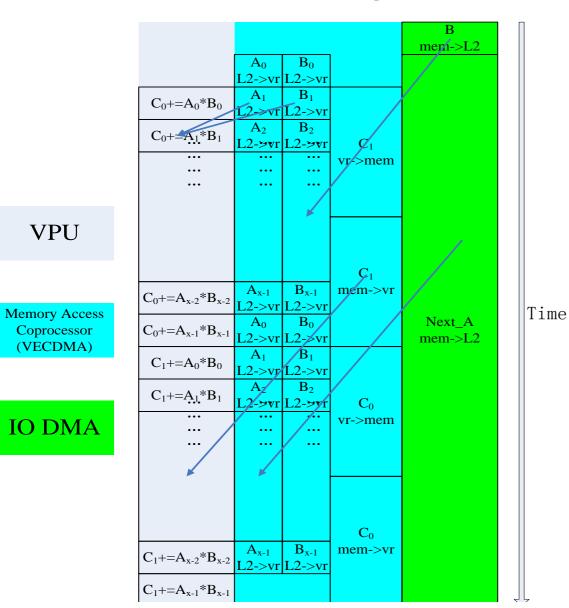

Micro-architecture of GS464V

Feeding the Starving Vector Unit

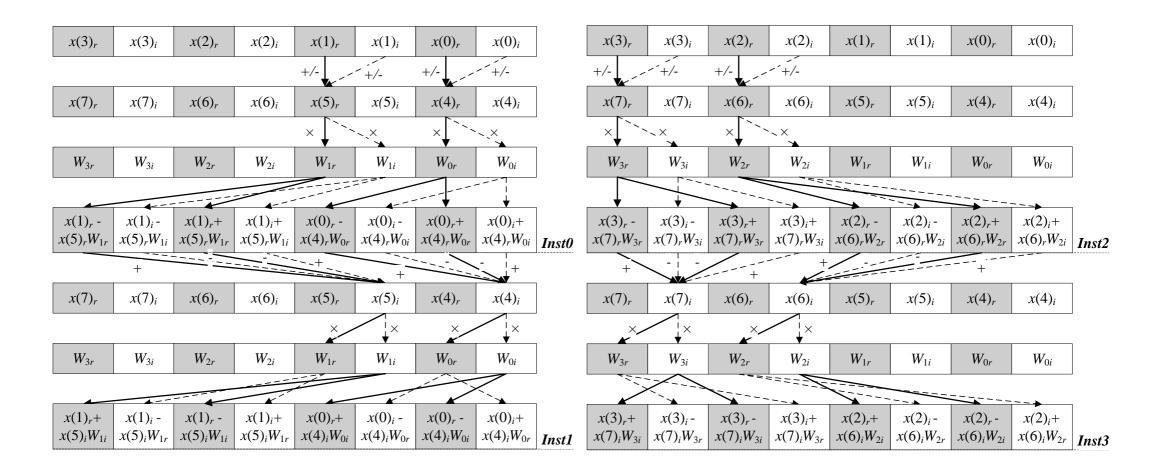

With limited bandwidth, how to provide enough data in required format to feed the vector unit ?

- **Two 256-bit vector unit, limited bandwidth**
- ♦ Use the bandwidth more efficiently
- Special data link for vector unit
 - ◆ Data moves in parallel with computation
 - ◆ Data are move continuously in large blocks
 - Reorganizing data in the way from memory/cache to VR, as required by applications.

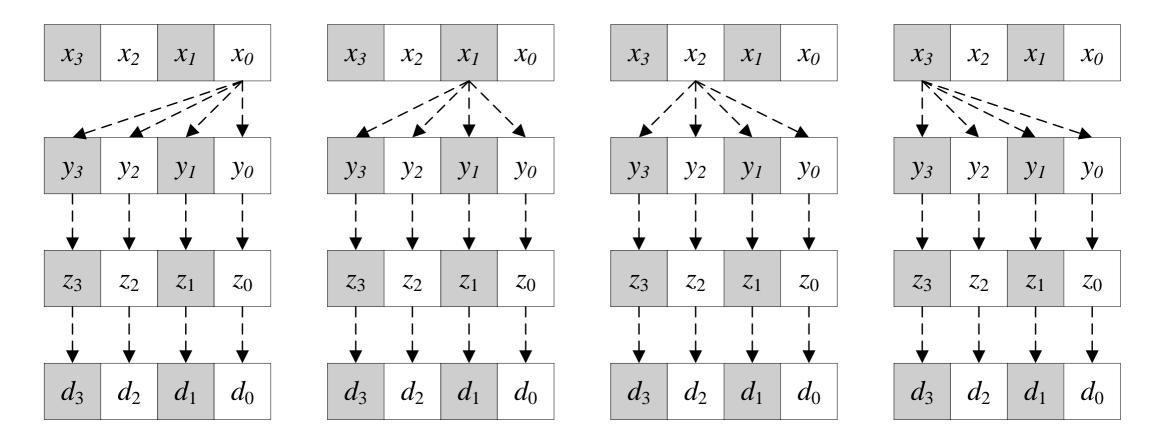
Godson Super Link (GSL)


- Direct and reconfigurable data transfer between vector register and cache/memory
 - ♦ Matrix transposing
 - ♦ Bit revert
 - Entropy decoding
 - ♦.....
 - Memory access coprocessor
 - **♦** Multiple Godson Super-Link
 - ♦ Flow control among GSLs
 - ♦ Synchronize with GS464V

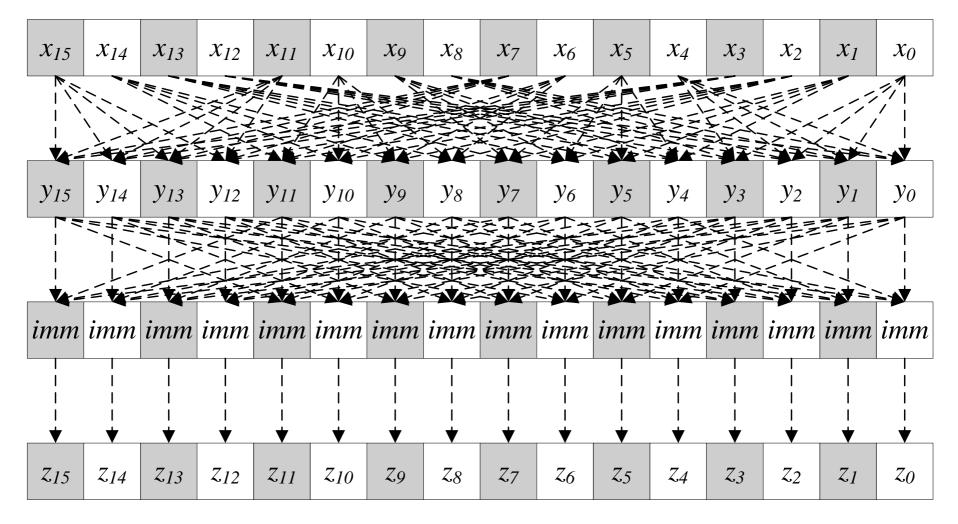
Programing Model


{
.....
GSL_transfer_data(from, to, format);
..... // independent codes
GSL_wait_transfer_complete;
..... // codes depend on the transferred data

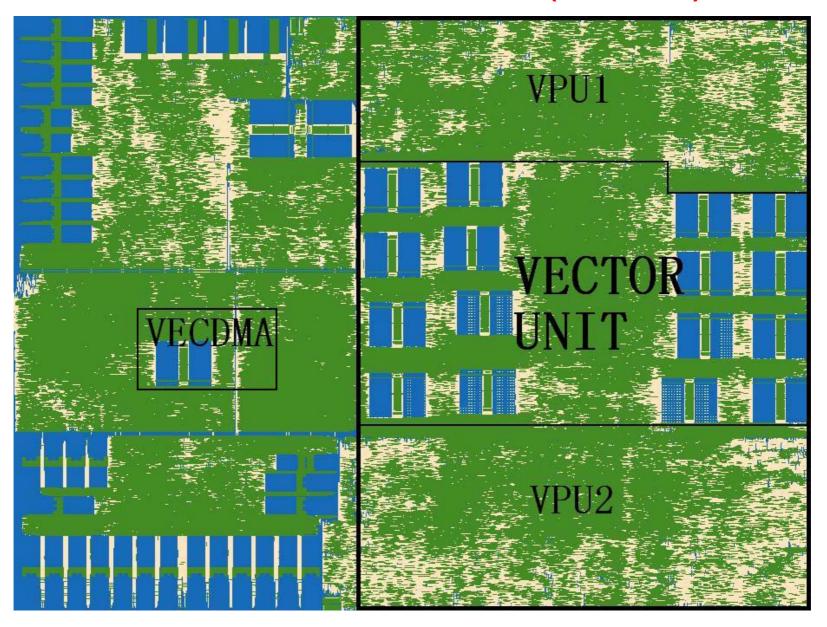
Parallel data movement and computation: Linpack as an example



- Computation and shuffle in parallel
- Computation and data transferring in parallel
 - ■VR↔L2
 - VR↔mem


Computation and Shuffling in one Instruction: Vector Instruction for FFT

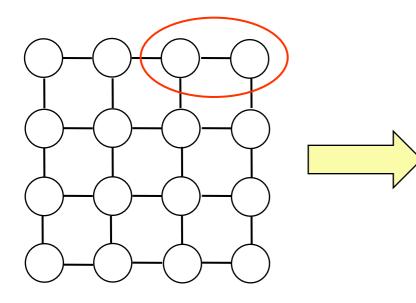
Computation and Shuffling in one Instruction: Vector Instruction for Linpack

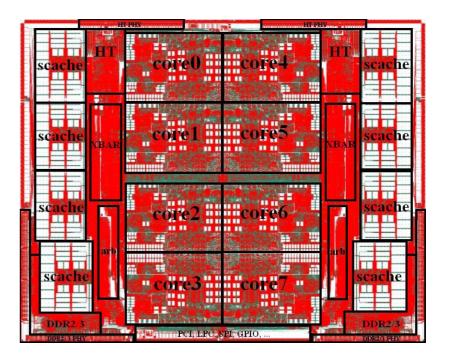

Computation and Shuffling in one Instruction: Vector Instruction for Media

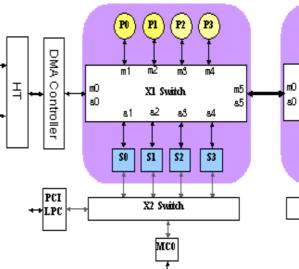
Performance Results

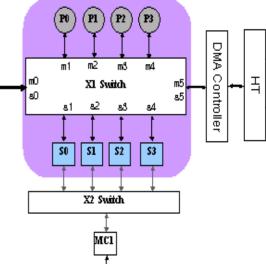
- With FPGA prototyping and RTL simulation, GS464V achieves excellent performance
- Eight-core godson-3B (64 MACs, 2 DDR3) achieves
 - **♦>93%** of peak performance for matrix multiplication
 - **♦>87%** of peak performance for 1024 point complex FFT
 - ♦0.37us for 1024 point floating point FFT at 1GHz
- 1080p high definition H.264 decoding with single core at 1GHz
 - **♦**>100 frames per second

GDSII of GS464V (65nm)

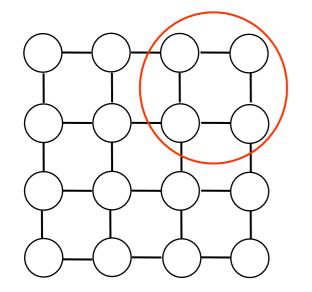


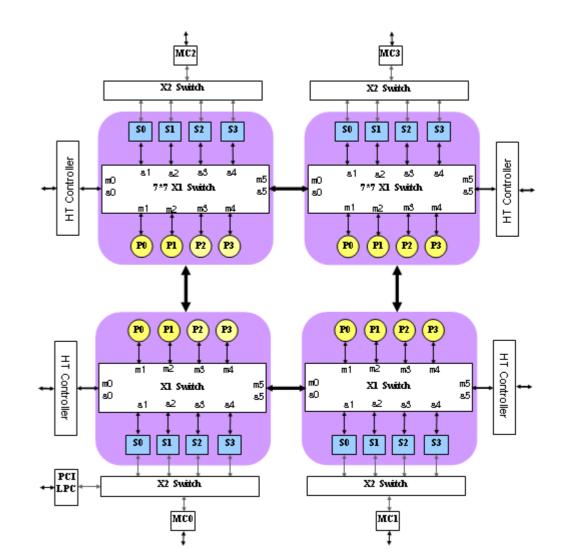

Contents


- Background
- The XPU architecture of GS464V
- **Godson chips based on GS464V**
 - Multi-core chips for servers and HPCs
 - SOC chips for low-cost PC

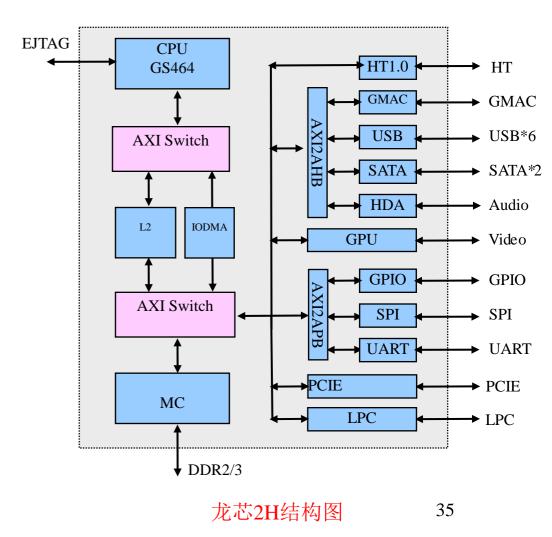

8-core Godson-3B

8 four-issue 64-bit core
2*256-bit Vector Ext. per core
1.0GHz@65nm
128GFLOPS@40W
2 DDR3, 2 HT Controllers
583M xtors, 300mm²
Taped out 2010.5



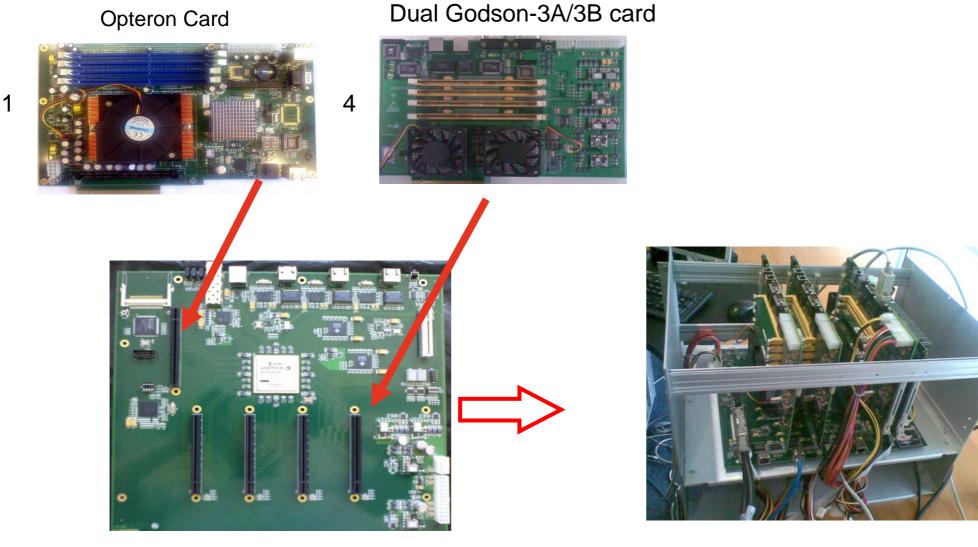


16-core Godson-3C


16 four-issue 64-bit Core
2*256-bit Vector Ext. per core
1.5-2.0GHz@28nm
384-512GFLOPS@20W
4 DDR3, 4 HT Controllers
To be taped out 2011

Godson-2H for Low-cost PC

- 1GHz@65nm
- GS464V (HD media decoding)
- **512KB L2**
- **3D** low power GPU
- **DDR2/3** memory controller
- PCIE 2.0 controller
- SATA, USB, GMAC controller
- LPC, SPI, UART, etc.
- Single chip solution for low cost PC
- To be taped out 2010Q4



Dawning Blades with Godson-3A/3B

Personal HPC Node

5HT+1 PCI-E x8 board

HPP node

1U16P Board for HPC

1U2T with Godson-3B 1U8T with Godson-3C

Conclusion

- **XPU: convergence of CPU/DSP/MPU/GPU**
 - Vector Unit + Godson Super Link
 - **♦Provides enough data with correct format to feed the starving CPU**
 - ◆Data is reorganized in the way from memory to register
- Achieves high performance
 - **♦93%** Matrix multiplication, 87% FFT for 8-core Godson-3B
 - ♦>100 frames 1080p H.264 decoding for single core 1GHz Godson-2H
- **Godson chips and applications**
 - **♦**Godson-3B/3C: High-end computing
 - **♦**Godson-2H: Low-cost PC and media applications

Thanks

Abbreviations

- CPU Central Processing Unit
- MPU Media Processing Unit
- GPU Graphic Processing Unit
- XPU eXtra Processing Unit
- OOO Out-of-Order
- HT HyperTransport
- NB North Bridge
- SB South Bridge
- **AXI** An Open Standard On-chip Interconnect Specification of ARM
- GSL Godson Super-Link
- **GDS** Graphic Database System
- SPI Serial Peripheral Interface
- LPC Low Pin Count